Publication:
Domain specific transfer learning using image mixing and stochastic image selection

Abstract

Can a gradual transition from the source to the target dataset improve knowledge transfer when fine-tuning a convolutional neural network to a new domain? Can we use training examples from general image datasets to improve classification on fine-grained datasets? We present two image similarity metrics and two methods for progressively transitioning from the source dataset to the target dataset when fine-tuning to a new domain. Preliminary results, using the Flowers 102 dataset, show that the first proposed method, stochastic domain subset training, gives an improvement in classification accuracy compared to standard fine-tuning, for one of the two similarity metrics. However, the second method, continuous domain subset training, results in a reduction in classification performance.

Citation

Coup, S., Vetrova, V., Frank, E., & Tappenden, R. (2019). Domain specific transfer learning using image mixing and stochastic image selection. Presented at the The Sixth Workshop on Fine-Grained Visual Categorization (FGVC6), Computer Vision and Pattern Recognition Conference (EVPR 2019), Long Beach, CA.

Series name

Date

Publisher

Degree

Type of thesis

Supervisor

DOI

Link to supplementary material

Research Projects

Organizational Units

Journal Issue