On λ-invariants attached to cyclic cubic number fields
| dc.contributor.author | Delbourgo, Daniel | en_NZ |
| dc.contributor.author | Qin, Chao | en_NZ |
| dc.date.accessioned | 2016-01-13T03:52:29Z | |
| dc.date.available | 2015 | en_NZ |
| dc.date.available | 2016-01-13T03:52:29Z | |
| dc.date.issued | 2015 | en_NZ |
| dc.description.abstract | We describe an algorithm for finding the coefficients of F(X) modulo powers of p, where p ≠2 is a prime number and F(X) is the power series associated to the zeta function of Kubota and Leopoldt. We next calculate the 5-adic and 7-adic λ-invariants attached to those cubic extensions K/Q with cyclic Galois group A₃ (up to field discriminant <10⁷), and also tabulate the class number of K(e2πi/p) for p=5 and p=7. If the λ-invariant is greater than zero, we then determine all the zeros for the corresponding branches of the p-adic L-function and deduce Λ-monogeneity for the class group tower over the cyclotomic Zp-extension of K. | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.citation | Delbourgo, D., & Qin, C. (2015). On λ-invariants attached to cyclic cubic number fields. LMS Journal of Computation and Mathematics, 18(1), 684–698. http://doi.org/10.1112/S1461157015000224 | en |
| dc.identifier.doi | 10.1112/S1461157015000224 | en_NZ |
| dc.identifier.issn | 1461-1570 | en_NZ |
| dc.identifier.uri | https://hdl.handle.net/10289/9843 | |
| dc.language.iso | en | |
| dc.publisher | London Mathematical Society | en_NZ |
| dc.relation.isPartOf | LMS Journal of Computation and Mathematics | en_NZ |
| dc.rights | © 2015 Authors. | |
| dc.title | On λ-invariants attached to cyclic cubic number fields | en_NZ |
| dc.type | Journal Article | |
| dspace.entity.type | Publication | |
| pubs.begin-page | 684 | |
| pubs.end-page | 698 | |
| pubs.issue | 1 | en_NZ |
| pubs.publication-status | Published | en_NZ |
| pubs.volume | 18 | en_NZ |