Publication:
Prediction of ordinal classes using regression trees

Abstract

This paper is devoted to the problem of learning to predict ordinal (i.e., ordered discrete) classes using classification and regression trees. We start with S-CART, a tree induction algorithm, and study various ways of transforming it into a learner for ordinal classification tasks. These algorithm variants are compared on a number of benchmark data sets to verify the relative strengths and weaknesses of the strategies and to study the trade-off between optimal categorical classification accuracy (hit rate) and minimum distance-based error. Preliminary results indicate that this is a promising avenue towards algorithms that combine aspects of classification and regression.

Citation

Kramer, S., Widmer, G. Pfahringer, B. & DeGroeve, M. (2000). Prediction of ordinal classes using regression tree. In Z.W. Ras & S. Ohsuga(Eds), Proceedings of 12th International Symposium, ISMIS 2000 Charlotte, NC, USA, October 11–14, 2000. (pp. 665-674). Berlin: Springer.

Series name

Date

Publisher

Springer, Berlin

Degree

Type of thesis

Supervisor

DOI

Link to supplementary material

Research Projects

Organizational Units

Journal Issue