Temporal dynamics of geothermal microbial communities in Aotearoa-New Zealand

dc.contributor.authorPower, Jean Florenceen_NZ
dc.contributor.authorLowe, Caitlin L.en_NZ
dc.contributor.authorCarere, Carlo R. en_NZ
dc.contributor.authorStott, Matthew B.en_NZ
dc.contributor.authorCary, S. Craig
dc.contributor.authorMcDonald, Ian R.
dc.date.accessioned2023-05-02T04:21:04Z
dc.date.available2023-05-02T04:21:04Z
dc.date.issued2023-01-01en_NZ
dc.description.abstractMicrobial biogeography studies, in particular for geothermal-associated habitats, have focused on spatial patterns and/or individual sites, which have limited ability to describe the dynamics of ecosystem behaviour. Here, we report the first comprehensive temporal study of bacterial and archaeal communities from an extensive range of geothermal features in Aotearoa-New Zealand. One hundred and fifteen water column samples from 31 geothermal ecosystems were taken over a 34-month period to ascertain microbial community stability (control sites), community response to both natural and anthropogenic disturbances in the local environment (disturbed sites) and temporal variation in spring diversity across different pH values (pH 3, 5, 7, 9) all at a similar temperature of 60–70°C (pH sites). Identical methodologies were employed to measure microbial diversity via 16S rRNA gene amplicon sequencing, along with 44 physicochemical parameters from each feature, to ensure confidence in comparing samples across timeframes. Our results indicated temperature and associated groundwater physicochemistry were the most likely parameters to vary stochastically in these geothermal features, with community abundances rather than composition more readily affected by a changing environment. However, variation in pH (pH ±1) had a more significant effect on community structure than temperature (±20°C), with alpha diversity failing to adequately measure temporal microbial disparity in geothermal features outside of circumneutral conditions. While a substantial physicochemical disturbance was required to shift community structures at the phylum level, geothermal ecosystems were resilient at this broad taxonomic rank and returned to a pre-disturbed state if environmental conditions re-established. These findings highlight the diverse controls between different microbial communities within the same habitat-type, expanding our understanding of temporal dynamics in extreme ecosystems.en_NZ
dc.format.mimetypeapplication/pdf
dc.identifier.doi10.3389/fmicb.2023.1094311en_NZ
dc.identifier.eissn1664-302Xen_NZ
dc.identifier.urihttps://hdl.handle.net/10289/15703
dc.language.isoen
dc.relation.isPartOfFrontiers in Microbiologyen_NZ
dc.rights© 2023 Authors. This work is licensed under a CC BY 4.0 licence.
dc.titleTemporal dynamics of geothermal microbial communities in Aotearoa-New Zealanden_NZ
dc.typeJournal Article
dspace.entity.typePublication
pubs.publication-statusPublisheden_NZ
pubs.volume14en_NZ

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
fmicb-14-1094311.pdf
Size:
7.06 MB
Format:
Adobe Portable Document Format
Description:
Published version

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Research Commons Deposit Agreement 2017.pdf
Size:
188.11 KB
Format:
Adobe Portable Document Format
Description: