Loading...
Thumbnail Image
Publication

Models of q-algebra representations: Tensor products of special unitary and oscillator algebras

Abstract
This paper begins a study of one- and two-variable function space models of irreducible representations of q analogs of Lie enveloping algebras, motivated by recurrence relations satisfied by q-hypergeometric functions. The algebras considered are the quantum algebra Uq(su2) and a q analog of the oscillator algebra (not a quantum algebra). In each case a simple one-variable model of the positive discrete series of finite- and infinite-dimensional irreducible representations is used to compute the Clebsch–Gordan coefficients. It is shown that various q analogs of the exponential function can be used to mimic the exponential mapping from a Lie algebra to its Lie group and the corresponding matrix elements of the ``group operators'' on these representation spaces are computed. It is shown that the matrix elements are polynomials satisfying orthogonality relations analogous to those holding for true irreducible group representations. It is also demonstrated that general q-hypergeometric functions can occur as basis functions in two-variable models, in contrast with the very restricted parameter values for the q-hypergeometric functions arising as matrix elements in the theory of quantum groups.
Type
Journal Article
Type of thesis
Series
Citation
Kalnins, E.G., Manocha, H.L. & Miller, W., Jr. (1992). Models of q-algebra representations: Tensor products of special unitary and oscillator algebras. Journal of Mathematical Physics,33, 2365.
Date
1992-07
Publisher
Degree
Supervisors
Rights
Copyright 1992 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in the Journal of Mathematical Physics and may be found at http://jmp.aip.org/jmp/top.jsp