A semi-supervised spam mail detector

dc.contributor.authorPfahringer, Bernhard
dc.coverage.spatialConference held at Berlin, Germanyen_NZ
dc.date.accessioned2008-11-27T03:42:29Z
dc.date.available2008-11-27T03:42:29Z
dc.date.issued2006
dc.description.abstractThis document describes a novel semi-supervised approach to spam classification, which was successful at the ECML/PKDD 2006 spam classification challenge. A local learning method based on lazy projections was successfully combined with a variant of a standard semi-supervised learning algorithm.en_US
dc.format.mimetypeapplication/pdf
dc.identifier.citationPfahringer, B. (2006). A semi-supervised spam mail detector. In Proceedings of the ECML/PKDD 2006 Discovery Challenge Workshop, September 18-22, Berlin, Germany.en_US
dc.identifier.urihttps://hdl.handle.net/10289/1482
dc.language.isoen
dc.relation.urihttp://www.ecmlpkdd2006.org/challenge.htmlen_US
dc.rightsThis article has been published in the Proceedings of the ECML/PKDD 2006 Discovery Challenge Workshop, September 18-22, Berlin, Germany. Used with permission.en_US
dc.sourceDiscovery Challenge Workshopen_NZ
dc.subjectcomputer scienceen_US
dc.subjectSpam classificationen_US
dc.subjectsemi-supervised learning algorithmen_US
dc.subjectMachine learning
dc.titleA semi-supervised spam mail detectoren_US
dc.typeConference Contributionen_US
dspace.entity.typePublication
pubs.finish-date2006-09-22en_NZ
pubs.start-date2006-09-18en_NZ

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
A semi-supervised spam mail detector.pdf
Size:
74.86 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.79 KB
Format:
Item-specific license agreed upon to submission
Description: