Harmonic sets and the harmonic prime number theorem

dc.contributor.authorBroughan, Kevin A.
dc.contributor.authorCasey, Rory J.
dc.date.accessioned2009-02-22T21:02:28Z
dc.date.available2009-02-22T21:02:28Z
dc.date.issued2005
dc.description.abstractWe restrict primes and prime powers to sets H(x)= U∞n=1 (x/2n, x/(2n-1)). Let θH(x)= ∑ pεH(x)log p. Then the error in θH(x) has, unconditionally, the expected order of magnitude θH (x)= xlog2 + O(√x). However, if ψH(x)= ∑pmε H(x) log p then ψH(x)= xlog2+ O(log x). Some reasons for and consequences of these sharp results are explored. A proof is given of the “harmonic prime number theorem” π H(x)/ π(x) → log2.en
dc.format.mimetypeapplication/pdf
dc.identifier.citationBroughan, K.A. & Casey, R. J. (2005). Harmonic sets and the harmonic prime number theorem. Bulletin of the Australian Mathematical Society, 71, 127-137.en
dc.identifier.doi10.1017/S0004972700038089en_NZ
dc.identifier.urihttps://hdl.handle.net/10289/2038
dc.language.isoen
dc.publisherAustralian Mathematical Publishing Association Inc.en_NZ
dc.relation.isPartOfBulletin of the Australian Mathematical Societyen_NZ
dc.relation.urihttp://www.austms.org.au/Bulletinen
dc.rightsThis article has been published in the journal: Bulletin of the Australian Mathematical Society. ©2005 Australian Mathematical Society. Used with Permission.en
dc.subjectharmonic prime number theoremen
dc.titleHarmonic sets and the harmonic prime number theoremen
dc.typeJournal Articleen
dspace.entity.typePublication
pubs.begin-page127en_NZ
pubs.end-page137en_NZ
pubs.issue1en_NZ
pubs.volume71en_NZ

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
harmonic sets.pdf
Size:
231.86 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.79 KB
Format:
Item-specific license agreed upon to submission
Description: