Loading...
Thumbnail Image
Publication

Comparing cross-sectional and longitudinal tracking to establish percentile data and assess performance progression in swimmers

Abstract
To provide percentile curves for short-course swimming events, including 5 swimming strokes, 6 race distances, and both sexes, as well as to compare diferences in race times between cross-sectional analysis and longitudinal tracking, a total of 31,645,621 race times of male and female swimmers were analyzed. Two percentile datasets were established from individual swimmers’ annual best times and a two-way analysis of variance (ANOVA) was used to determine diferences between cross-sectional analysis and longitudinal tracking. A software-based percentile calculator was provided to extract the exact percentile for a given race time. Longitudinal tracking reduced the number of annual best times that were included in the percentiles by 98.35% to 262,071 and showed faster mean race times (P< 0.05) compared to the cross-sectional analysis. This diference was found in the lower percentiles (1st to 20th) across all age categories (P< 0.05); however, in the upper percentiles (80th to 99th), longitudinal tracking showed faster race times during early and late junior age only (P< 0.05), after which race times approximated cross-sectional tracking. The percentile calculator provides quick and easy data access to facilitate practical application of percentiles in training or competition. Longitudinal tracking that accounts for drop-out may predict performance progression towards elite age, particularly for high-performance swimmers.
Type
Journal Article
Type of thesis
Series
Citation
Date
2022
Publisher
Nature Portfolio
Degree
Supervisors
Rights