Publication

Determining progression in glaucoma using visual fields

Abstract
The standardized visual field assessment, which measures visual function in 76 locations of the central visual area, is an important diagnostic tool in the treatment of the eye disease glaucoma. It helps determine whether the disease is stable or progressing towards blindness, with important implications for treatment. Automatic techniques to classify patients based on this assessment have had limited success, primarily due to the high variability of individual visual field measurements. The purpose of this paper is to describe the problem of visual field classification to the data mining community, and assess the success of data mining techniques on it. Preliminary results show that machine learning methods rival existing techniques for predicting whether glaucoma is progressing—though we have not yet been able to demonstrate improvements that are statistically significant. It is likely that further improvement is possible, and we encourage others to work on this important practical data mining problem.
Type
Conference Contribution
Type of thesis
Series
Citation
Turpin, A., Frank, E., Hall, M., Witten, I.H. & Johnson, C.A. (2001). Determining progression in glaucoma using visual fields. In Proceedings of Advances in Knowledge Discovery and Data Mining 5th Pacific-Asia Conference, PAKDD 2001 Hong Kong, China, April 16–18, 2001 (pp. 136-147), Berlin: Springer.
Date
2001
Publisher
Springer Berlin
Degree
Supervisors
Rights