Publication

Multi-label classification using boolean matrix decomposition

Abstract
This paper introduces a new multi-label classifier based on Boolean matrix decomposition. Boolean matrix decomposition is used to extract, from the full label matrix, latent labels representing useful Boolean combinations of the original labels. Base level models predict latent labels, which are subsequently transformed into the actual labels by Boolean matrix multiplication with the second matrix from the decomposition. The new method is tested on six publicly available datasets with varying numbers of labels. The experimental evaluation shows that the new method works particularly well on datasets with a large number of labels and strong dependencies among them.
Type
Conference Contribution
Type of thesis
Series
Citation
Wicker, J., Pfahringer, B. & Kramer, S. (2012). Multi-label classification using boolean matrix decomposition. In Proceedings of the 27th Annual ACM Symposium on Applied Computing (SAC '12). ACM, New York, 179-186.
Date
2012
Publisher
ACM
Degree
Supervisors
Rights