Publication: Separation of variables on n-dimensional Riemannian manifolds. I. The n-sphere Sn and Euclidean n-space Rn
Authors
Loading...
Permanent Link
DOI
Publisher link
Rights
Copyright 1986 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in the Journal of Mathematical Physics and may be found at http://jmp.aip.org/jmp/top.jsp
Abstract
The following problem is solved: What are all the ``different'' separable coordinate systems for the Laplace–Beltrami eigenvalue equation on the n-sphere Sn and Euclidean n-space Rn and how are they constructed? This is achieved through a combination of differential geometric and group theoretic methods. A graphical procedure for construction of these systems is developed that generalizes Vilenkin's construction of polyspherical coordinates. The significance of these results for exactly soluble dynamical systems on these manifolds is pointed out. The results are also of importance for the analysis of the special functions appearing in the separable solutions of the Laplace–Beltrami eigenvalue equation on these manifolds.
Citation
Kalnins, E.G. & Miller, W., Jr. (1986). Separation of variables on n-dimensional Riemannian manifolds. I. The n-sphere Sn and Euclidean n-space Rn. Journal of Mathematical Physics, 27, 1721.