Publication:
Separation of variables on n-dimensional Riemannian manifolds. I. The n-sphere Sn and Euclidean n-space Rn

Loading...
Thumbnail Image

Publisher link

Rights

Copyright 1986 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in the Journal of Mathematical Physics and may be found at http://jmp.aip.org/jmp/top.jsp

Abstract

The following problem is solved: What are all the ``different'' separable coordinate systems for the Laplace–Beltrami eigenvalue equation on the n-sphere Sn and Euclidean n-space Rn and how are they constructed? This is achieved through a combination of differential geometric and group theoretic methods. A graphical procedure for construction of these systems is developed that generalizes Vilenkin's construction of polyspherical coordinates. The significance of these results for exactly soluble dynamical systems on these manifolds is pointed out. The results are also of importance for the analysis of the special functions appearing in the separable solutions of the Laplace–Beltrami eigenvalue equation on these manifolds.

Citation

Kalnins, E.G. & Miller, W., Jr. (1986). Separation of variables on n-dimensional Riemannian manifolds. I. The n-sphere Sn and Euclidean n-space Rn. Journal of Mathematical Physics, 27, 1721.

Series name

Publisher

Degree

Type of thesis

Supervisor

Link to supplementary material

Research Projects

Organizational Units

Journal Issue