KEA: Practical automatic keyphrase extraction

dc.contributor.authorWitten, Ian H.en_NZ
dc.contributor.authorPaynter, Gordon W.en_NZ
dc.contributor.authorFrank, Eibeen_NZ
dc.contributor.authorGutwin, Carlen_NZ
dc.contributor.authorNevill-Manning, Craig G.en_NZ
dc.contributor.editorTheng, YLen_NZ
dc.contributor.editorFoo, Sen_NZ
dc.date.accessioned2024-01-24T20:57:48Z
dc.date.available2024-01-24T20:57:48Z
dc.date.issued2005en_NZ
dc.description.abstractKeyphrases provide semantic metadata that summarize and characterize documents. This paper describes Kea, an algorithm for automatically extracting keyphrases from text. Kea identifies candidate keyphrases using lexical methods, calculates feature values for each candidate, and uses a machine-learning algorithm to predict which candidates are good keyphrases. The machine learning scheme first builds a prediction model using training documents with known keyphrases, and then uses the model to find keyphrases in new documents. We use a large test corpus to evaluate Kea’s effectiveness in terms of how many author-assigned keyphrases are correctly identified. The system is simple, robust, and available under the GNU General Public License; the paper gives instructions for use.
dc.format.mimetypeapplication/pdf
dc.identifier.doi10.4018/978-1-59140-441-5.ch008en_NZ
dc.identifier.isbn1-59140-441-Xen_NZ
dc.identifier.urihttps://hdl.handle.net/10289/16395
dc.language.isoen
dc.publisherInformation Science Publishingen_NZ
dc.relation.isPartOfDesign and Usability of Digital Libraries: Case Studies in the Asia Pacificen_NZ
dc.rightsThis is an author’s accepted version of a chapter published in the book: Design and Usability of Digital Libraries: Case Studies in the Asia Pacific. © 2005 Information Science Publishing.
dc.titleKEA: Practical automatic keyphrase extractionen_NZ
dc.typeChapter in Book
dspace.entity.typePublication
pubs.begin-page129
pubs.end-page152
pubs.place-of-publicationUnited Kingdomen_NZ
uow.identifier.chapter-noChapter 8

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
chap_Witten-et-al_Windows.pdf
Size:
307.35 KB
Format:
Adobe Portable Document Format
Description:
Accepted version

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Research Commons Deposit Agreement 2017.pdf
Size:
188.11 KB
Format:
Adobe Portable Document Format
Description: