A lower bound for the size of the smallest critical set in the back circulant latin square
| dc.contributor.author | Cavenagh, Nicholas J. | |
| dc.date.accessioned | 2010-02-03T01:50:24Z | |
| dc.date.available | 2010-02-03T01:50:24Z | |
| dc.date.issued | 2006 | |
| dc.description.abstract | The back circulant latin square of order n is the latin square based on the addition table for the integers modulo n. A critical set is a partial latin square that has a unique completion to a latin square, and is minimal with respect to this property. In this note we show that the size of a critical set in the back circulant latin square of order n is at least n ⁴/³/2 - n - n²/³/2 + 2n¹/³ - 1. | en |
| dc.format.mimetype | application/pdf | |
| dc.identifier.citation | Cavenagh, N.J. (2006). A lower bound for the size of the smallest critical set in the back circulant latin square. Australasian Journal of Combinatorics, 36, 231- 239. | en |
| dc.identifier.issn | 1034-4942 | |
| dc.identifier.uri | https://hdl.handle.net/10289/3543 | |
| dc.language.iso | en | |
| dc.publisher | Combinatorial Mathematics Society of Australasia (Inc.) | en |
| dc.relation.isPartOf | Australasian Journal of Combinatorics | en_NZ |
| dc.relation.uri | http://ajc.maths.uq.edu.au/ | en |
| dc.rights | This article has been published in the Australasian Journal of Combinatorics. Used with permission. | en |
| dc.subject | mathematics | en |
| dc.title | A lower bound for the size of the smallest critical set in the back circulant latin square | en |
| dc.type | Journal Article | en |
| dspace.entity.type | Publication | |
| pubs.begin-page | 231 | en_NZ |
| pubs.end-page | 239 | en_NZ |
| pubs.volume | 36 | en_NZ |