Eliciting informative priors by modeling expert decision making

dc.contributor.authorFalconer, Julia Ruthen_NZ
dc.contributor.authorFrank, Eibeen_NZ
dc.contributor.authorPolaschek, Devon L. L.en_NZ
dc.contributor.authorJoshi, Chaitanyaen_NZ
dc.date.accessioned2024-01-18T02:46:05Z
dc.date.available2024-01-18T02:46:05Z
dc.date.issued2023en_NZ
dc.description.abstractThere are significant limitations to current methods for eliciting the prior beliefs of experts. To combat some of these limitations, this paper proposes an alternative approach that infers an expert’s prior beliefs about an uncertain event, A, from the expert’s past decisions. We show that an analyst can use past information on an expert’s decision-making task, contingent on an expert’s prior of A, to model the decision-making process and infer an approximation of the prior for A. This concept is illustrated by an application to recidivism. We conclude this work by highlighting important directions for future research. Funding: J. R. Falconer’s research is funded through the University of Waikato Doctoral Scholarship.en_NZ
dc.format.mimetypeapplication/pdf
dc.identifier.doi10.1287/deca.2023.0046en_NZ
dc.identifier.eissn1545-8504en_NZ
dc.identifier.issn1545-8490en_NZ
dc.identifier.urihttps://hdl.handle.net/10289/16361
dc.language.isoenen_NZ
dc.publisherInstitute for Operations Research and the Management Sciences (INFORMS)en_NZ
dc.relation.isPartOfDecision Analysisen_NZ
dc.relation.urihttp://dx.doi.org/10.1287/deca.2023.0046en_NZ
dc.rightsThis is an author’s accepted version of an article published in Decision Analysis. © 2023 INFORMS.
dc.titleEliciting informative priors by modeling expert decision makingen_NZ
dc.typeJournal Article
dspace.entity.typePublication
pubs.publication-statusPublished onlineen_NZ

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Eliciting_Informative_Priors_by_Modelling_Expert_Decision_Making-_FINAL.pdf
Size:
624.55 KB
Format:
Adobe Portable Document Format
Description:
Accepted version

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Research Commons Deposit Agreement 2017.pdf
Size:
188.11 KB
Format:
Adobe Portable Document Format
Description: