DNA adsorption by nanocrystalline allophane spherules and nanoaggregates, and implications for carbon sequestration in Andisols

dc.contributor.authorHuang, Yu-Tuanen_NZ
dc.contributor.authorLowe, David J.en_NZ
dc.contributor.authorChurchman, G. Jocken_NZ
dc.contributor.authorSchipper, Louis A.en_NZ
dc.contributor.authorCursons, Raymond T.en_NZ
dc.contributor.authorZhang, Hengen_NZ
dc.contributor.authorChen, Tsan-Yaoen_NZ
dc.contributor.authorCooper, Alanen_NZ
dc.date.accessioned2016-03-17T01:25:55Z
dc.date.available2016-02-01en_NZ
dc.date.available2016-03-17T01:25:55Z
dc.date.issued2016-02-01en_NZ
dc.description.abstractThis study provides fundamental knowledge about the interaction of allophane, deoxyribonucleic acid (DNA), and organic matter in soils, and how allophane sequesters DNA. The adsorption capacities of salmon-sperm DNA on pure synthetic allophane (characterised morphologically and chemically) and on humic-acid-rich synthetic allophane were determined, and the resultant DNA–allophane complexes were characterised using synchrotron-radiation-derived P X-ray absorption near-edge fine structure (XANES) spectroscopy and infrared (IR) spectroscopy. The synthetic allophane adsorbed up to 34 μg mg⁻¹ of salmon-sperm DNA. However, the presence of humic acid significantly lowered the DNA uptake on the synthetic allophane to 3.5 μg mg⁻¹ by occupying the active sites on allophane so that DNA was repulsed. Both allophane and humic acid adsorbed DNA chemically through its phosphate groups. IR spectra for the allophane–DNA complex showed a chemical change of the Si–O–Al stretching of allophane after DNA adsorption, possibly because of the alteration of the steric distance of the allophane outer wall, or because of the precipitation of aluminium phosphate on allophane after DNA adsorption on it, or both. The aluminol groups of synthetic allophane almost completely reacted with additions of small amounts of DNA (~ 2–6 μg mg⁻¹ ), but the chemical adsorption of DNA on allophane simultaneously led to the formation of very porous allophane aggregates up to ~ 500 μm in diameter. The formation of the allophane nano- and microaggregates enabled up to 28 μg mg⁻¹ of DNA to be adsorbed (~ 80% of total) within spaces (pores) between allophane spherules and allophane nanoaggregates (as “physical adsorption”), giving a total of 34 μg mg⁻¹ of DNA adsorbed by the allophane. The stability of the allophane–DNA nano- and microaggregates likely prevents encapsulated DNA from exposure to oxidants, and DNA within small pores between allophane spherules and nanoaggregates may not be accessible to enzymes or microbes, hence enabling DNA protection and preservation in such materials. By implication, substantial organic carbon is therefore likely to be sequestered and protected in allophanic soils (Andisols) in the same way as demonstrated here for DNA, that is, predominantly by encapsulation within a tortuous network of nanopores and submicropores amidst stable nanoaggregates and microaggregates, rather than by chemisorption alone.
dc.format.mimetypeapplication/pdf
dc.identifier.citationHuang, Y.-T., Lowe, D. J., Churchman, G. J., Schipper, L. A., Cursons, R., Zhang, H., … Cooper, A. (2016). DNA adsorption by nanocrystalline allophane spherules and nanoaggregates, and implications for carbon sequestration in Andisols. Applied Clay Science, 120, 40–50. http://doi.org/10.1016/j.clay.2015.11.009en
dc.identifier.doi10.1016/j.clay.2015.11.009en_NZ
dc.identifier.issn0169-1317en_NZ
dc.identifier.urihttps://hdl.handle.net/10289/10000
dc.language.isoenen_NZ
dc.publisherElsevier B.V.en_NZ
dc.relation.isPartOfApplied Clay Scienceen_NZ
dc.rightsThis is an author’s accepted version of an article published in the journal: Applied Clay Science. © 2016 Elsevier B.V.
dc.subjectScience & Technologyen_NZ
dc.subjectPhysical Sciencesen_NZ
dc.subjectTechnologyen_NZ
dc.subjectChemistry, Physicalen_NZ
dc.subjectMaterials Science, Multidisciplinaryen_NZ
dc.subjectMineralogyen_NZ
dc.subjectChemistryen_NZ
dc.subjectMaterials Scienceen_NZ
dc.subjectSynthetic allophaneen_NZ
dc.subjectDNA adsorption capacityen_NZ
dc.subjectHumic acidsen_NZ
dc.subjectSynchrotron radiationen_NZ
dc.subjectNanoaggregatesen_NZ
dc.subjectCarbon sequestrationen_NZ
dc.subjectSOIL ORGANIC-MATTERen_NZ
dc.subjectNEW-ZEALANDen_NZ
dc.subjectVOLCANIC SOILSen_NZ
dc.subjectAGGREGATE HIERARCHYen_NZ
dc.subjectPHYSICAL-PROPERTIESen_NZ
dc.subjectNANO-PARTICLESen_NZ
dc.subjectPHOSPHATEen_NZ
dc.subjectSTABILIZATIONen_NZ
dc.subjectSPECTROSCOPYen_NZ
dc.subjectMINERALSen_NZ
dc.titleDNA adsorption by nanocrystalline allophane spherules and nanoaggregates, and implications for carbon sequestration in Andisolsen_NZ
dc.typeJournal Article
dspace.entity.typePublication
pubs.begin-page40
pubs.end-page50
pubs.publication-statusPublisheden_NZ
pubs.volume120en_NZ
uow.identifier.article-noCen_NZ

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
DNA adsorption _11 Nov 2015_R2_clean_FINAL with figs.pdf
Size:
1.46 MB
Format:
Adobe Portable Document Format
Description:
Accepted version

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Deposit Agreement.txt
Size:
193 B
Format:
Unknown data format
Description: