A K-fold averaging cross-validation procedure

Abstract

Cross-validation (CV) type of methods have been widely used to facilitate model estimation and variable selection. In this work, we suggest a new K-fold CV procedure to select a candidate ‘optimal’ model from each hold-out fold and average the K candidate ‘optimal’ models to obtain the ultimate model. Due to the averaging effect, the variance of the proposed estimates can be significantly reduced. This new procedure results in more stable and efficient parameter estimation than the classical K-fold CV procedure. In addition, we show the asymptotic equivalence between the proposed and classical CV procedures in the linear regression setting. We also demonstrate the broad applicability of the proposed procedure via two examples of parameter sparsity regularisation and quantile smoothing splines modelling. We illustrate the promise of the proposed method through simulations and a real data example.

Citation

Jung, Y., & Hu, J. (2015). A K-fold averaging cross-validation procedure. Journal of Nonparametric Statistics. http://doi.org/10.1080/10485252.2015.1010532

Series name

Publisher

Taylor and Francis

Degree

Type of thesis

Supervisor