Topologies induced by metrics with disconnected range

dc.contributor.authorBroughan, Kevin A.en_NZ
dc.date.accessioned2016-07-01T04:45:55Z
dc.date.available1982en_NZ
dc.date.available2016-07-01T04:45:55Z
dc.date.issued1982en_NZ
dc.description.abstractIn a metric space (X, d) a ball B(x, ε) is separated if d(B(x, ε), X\B(x, ε)] > 0. If the separated balls form a sub-base for the d-topology then Ind X = 0. The metric is gap-like at x if dx(X) is not dense in any neighbourhood of 0 in [0, ∞). The usual metric on the irrational numbers, P, is the uniform limit of compatible metrics (dn), each dn being gap-like on P. In a completely metrizable space X if each dense Gδ is an Fσ then Ind X = 0. © 1982, Australian Mathematical Society. All rights reserved.en_NZ
dc.format.mimetypeapplication/pdf
dc.identifier.citationBroughan, K. A. (1982). Topologies induced by metrics with disconnected range. Bulletin of the Australian Mathematical Society, 25(1), 133–142. http://doi.org/10.1017/S0004972700005116en
dc.identifier.doi10.1017/S0004972700005116en_NZ
dc.identifier.eissn1755-1633en_NZ
dc.identifier.issn0004-9727en_NZ
dc.identifier.urihttps://hdl.handle.net/10289/10500
dc.language.isoen
dc.relation.isPartOfBulletin of the Australian Mathematical Societyen_NZ
dc.rightsThis article is published in the Bulletin of the Australian Mathematical Society. Used with permission.
dc.titleTopologies induced by metrics with disconnected rangeen_NZ
dc.typeJournal Article
dspace.entity.typePublication
pubs.begin-page133
pubs.end-page142
pubs.issue1en_NZ
pubs.volume25en_NZ

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1982-Bulletin-Australian-Math-Society-25.pdf
Size:
312.67 KB
Format:
Adobe Portable Document Format
Description:
Published version

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Research Commons Deposit Agreement 2016.txt
Size:
263 B
Format:
Unknown data format
Description: