Publication:
Adaptive feature thresholding for off-line signature verification

Loading...
Thumbnail Image

Publisher link

Rights

This article has been published in the Proceeding of 23rd International Conference Image and Vision Computing New Zealand 2008 (IVCNZ 2008). ©2008 IEEE.

Abstract

This paper introduces Adaptive Feature Thresholding (AFT) which is a novel method of person-dependent off-line signature verification. AFT enhances how a simple image feature of a signature is converted to a binary feature vector by significantly improving its representation in relation to the training signatures. The similarity between signatures is then easily computed from their corresponding binary feature vectors. AFT was tested on the CEDAR and GPDS benchmark datasets, with classification using either a manual or an automatic variant. On the CEDAR dataset we achieved a classification accuracy of 92% for manual and 90% for automatic, while on the GPDS dataset we achieved over 87% and 85% respectively. For both datasets AFT is less complex and requires fewer images features than the existing state of the art methods, while achieving competitive results.

Citation

Larkins, R. & Mayo, M. (2008). Adaptive feature thresholding for off-line signature verification. In Proceeding of 23rd International Conference Image and Vision Computing New Zealand 2008(IVCNZ 2008).

Series name

Date

Publisher

IEEE Press

Degree

Type of thesis

Supervisor

DOI

Link to supplementary material

Research Projects

Organizational Units

Journal Issue