Optimizing the induction of alternating decision trees

dc.contributor.authorPfahringer, Bernhard
dc.contributor.authorHolmes, Geoffrey
dc.contributor.authorKirkby, Richard Brendon
dc.coverage.spatialConference held at Hong Kongen_NZ
dc.date.accessioned2008-11-28T03:29:13Z
dc.date.available2008-11-28T03:29:13Z
dc.date.issued2001
dc.description.abstractThe alternating decision tree brings comprehensibility to the performance enhancing capabilities of boosting. A single interpretable tree is induced wherein knowledge is distributed across the nodes and multiple paths are traversed to form predictions. The complexity of the algorithm is quadratic in the number of boosting iterations and this makes it unsuitable for larger knowledge discovery in database tasks. In this paper we explore various heuristic methods for reducing this complexity while maintaining the performance characteristics of the original algorithm. In experiments using standard, artificial and knowledge discovery datasets we show that a range of heuristic methods with log linear complexity are capable of achieving similar performance to the original method. Of these methods, the random walk heuristic is seen to out-perform all others as the number of boosting iterations increases. The average case complexity of this method is linear.en_US
dc.identifier.citationPfahringer, B., Holmes, G. & Kirkby, R. (2001). Optimizing the induction of alternating decision trees. In Proceedings of 5th Pacific-Asia Conference, PAKDD 2001 Hong Kong, China, April 16–18, 2001(pp.477-487). Berlin: Springer.en_US
dc.identifier.doi10.1007/3-540-45357-1_50en_US
dc.identifier.urihttps://hdl.handle.net/10289/1496
dc.language.isoen
dc.publisherSpringer, Berlinen_US
dc.relation.isPartOfAdvances in Knowledge Discovery and Datamining: Pacifc-Asia Conference Proceedingsen_NZ
dc.relation.urihttp://www.springerlink.com/content/1u8c8d4r9q48wnxq/en_US
dc.subjectcomputer scienceen_US
dc.subjectalternating decision treeen_US
dc.subjectMachine learning
dc.titleOptimizing the induction of alternating decision treesen_US
dc.typeConference Contributionen_US
dspace.entity.typePublication
pubs.begin-page477en_NZ
pubs.end-page487en_NZ
pubs.finish-date2001en_NZ
pubs.start-date2001en_NZ
pubs.volume2035en_NZ

Files

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.79 KB
Format:
Item-specific license agreed upon to submission
Description: