Interpretable deep learning for surgical tool management

dc.contributor.authorRodrigues, Mark Williamen_NZ
dc.contributor.authorMayo, Michaelen_NZ
dc.contributor.authorPatros, Panosen_NZ
dc.contributor.editorReyes, Mauricioen_NZ
dc.contributor.editorHenriques Abreu, Pedroen_NZ
dc.contributor.editorCardoso, Jaimeen_NZ
dc.contributor.editorHajij, Mustafaen_NZ
dc.contributor.editorZamzmi, Ghadaen_NZ
dc.contributor.editorRahul, Paulen_NZ
dc.contributor.editorThakur, Lokendraen_NZ
dc.coverage.spatialStrasbourg, Franceen_NZ
dc.date.accessioned2021-09-28T03:24:15Z
dc.date.available2021-09-28T03:24:15Z
dc.date.issued2021en_NZ
dc.description.abstractThis paper presents a novel convolutional neural network framework for multi-level classification of surgical tools. Our classifications are obtained from multiple levels of the model, and high accuracy is obtained by adjusting the depth of layers selected for predictions. Our framework enhances the interpretability of the overall predictions by providing a comprehensive set of classifications for each tool. This allows users to make rational decisions about whether to trust the model based on multiple pieces of information, and the predictions can be evaluated against each other for consistency and error-checking. The multi-level prediction framework achieves promising results on a novel surgery tool dataset and surgery knowledge base, which are important contributions of our work. This framework provides a viable solution for intelligent management of surgical tools in a hospital, potentially leading to significant cost savings and increased efficiencies.
dc.format.mimetypeapplication/pdf
dc.identifier.citationRodrigues M., Mayo M., Patros P. (2021) Interpretable Deep Learning for Surgical Tool Management. In: Reyes M. et al. (eds) Interpretability of Machine Intelligence in Medical Image Computing, and Topological Data Analysis and Its Applications for Medical Data. IMIMIC 2021, TDA4MedicalData 2021. Lecture Notes in Computer Science, vol 12929. Springer, Cham. https://doi.org/10.1007/978-3-030-87444-5_1
dc.identifier.doi10.1007/978-3-030-87444-5_1en_NZ
dc.identifier.isbn978-3-030-87444-5en_NZ
dc.identifier.urihttps://hdl.handle.net/10289/14577
dc.language.isoen
dc.publisherSpringeren_NZ
dc.relation.isPartOfProceeding of 4th International Workshop on Interpretability of Machine Intelligence in Medical Image Computing (iMIMIC 2021) LNCS 12929en_NZ
dc.rights© Springer Nature Switzerland AG 2021.This is the author's submitted version. The final publication is available at Springer via dx.doi.org/10.1007/978-3-030-87444-5_1
dc.sourceiMIMIC 2021en_NZ
dc.subjectcomputer scienceen_NZ
dc.subjectsurgical tool dataseten_NZ
dc.subjectmulti-level predictionsen_NZ
dc.subjecthierarchical classificationen_NZ
dc.subjectsurgery knowledge baseen_NZ
dc.titleInterpretable deep learning for surgical tool managementen_NZ
dc.typeConference Contribution
dspace.entity.typePublication
pubs.begin-page3
pubs.end-page12
pubs.finish-date2021-09-27en_NZ
pubs.place-of-publicationChamen_NZ
pubs.publication-statusPublisheden_NZ
pubs.start-date2021-09-27en_NZ

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
miccai-2021.pdf
Size:
1.22 MB
Format:
Adobe Portable Document Format
Description:
Submitted version

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Research Commons Deposit Agreement 2017.pdf
Size:
188.11 KB
Format:
Adobe Portable Document Format
Description: