Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • FAQs
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      DNA adsorption by nanocrystalline allophane spherules and nanoaggregates, and implications for carbon sequestration in Andisols

      Huang, Yu-Tuan; Lowe, David J.; Churchman, G. Jock; Schipper, Louis A.; Cursons, Raymond T.; Zhang, Heng; Chen, Tsan-Yao; Cooper, Alan
      Thumbnail
      Files
      DNA adsorption _11 Nov 2015_R2_clean_FINAL with figs.pdf
      Accepted version, 1.462Mb
      DOI
       10.1016/j.clay.2015.11.009
      Find in your library  
      Citation
      Export citation
      Huang, Y.-T., Lowe, D. J., Churchman, G. J., Schipper, L. A., Cursons, R., Zhang, H., … Cooper, A. (2016). DNA adsorption by nanocrystalline allophane spherules and nanoaggregates, and implications for carbon sequestration in Andisols. Applied Clay Science, 120, 40–50. http://doi.org/10.1016/j.clay.2015.11.009
      Permanent Research Commons link: https://hdl.handle.net/10289/10000
      Abstract
      This study provides fundamental knowledge about the interaction of allophane, deoxyribonucleic acid (DNA), and organic matter in soils, and how allophane sequesters DNA. The adsorption capacities of salmon-sperm DNA on pure synthetic allophane (characterised morphologically and chemically) and on humic-acid-rich synthetic allophane were determined, and the resultant DNA–allophane complexes were characterised using synchrotron-radiation-derived P X-ray absorption near-edge fine structure (XANES) spectroscopy and infrared (IR) spectroscopy. The synthetic allophane adsorbed up to 34 μg mg⁻¹ of salmon-sperm DNA. However, the presence of humic acid significantly lowered the DNA uptake on the synthetic allophane to 3.5 μg mg⁻¹ by occupying the active sites on allophane so that DNA was repulsed. Both allophane and humic acid adsorbed DNA chemically through its phosphate groups. IR spectra for the allophane–DNA complex showed a chemical change of the Si–O–Al stretching of allophane after DNA adsorption, possibly because of the alteration of the steric distance of the allophane outer wall, or because of the precipitation of aluminium phosphate on allophane after DNA adsorption on it, or both. The aluminol groups of synthetic allophane almost completely reacted with additions of small amounts of DNA (~ 2–6 μg mg⁻¹ ), but the chemical adsorption of DNA on allophane simultaneously led to the formation of very porous allophane aggregates up to ~ 500 μm in diameter. The formation of the allophane nano- and microaggregates enabled up to 28 μg mg⁻¹ of DNA to be adsorbed (~ 80% of total) within spaces (pores) between allophane spherules and allophane nanoaggregates (as “physical adsorption”), giving a total of 34 μg mg⁻¹ of DNA adsorbed by the allophane. The stability of the allophane–DNA nano- and microaggregates likely prevents encapsulated DNA from exposure to oxidants, and DNA within small pores between allophane spherules and nanoaggregates may not be accessible to enzymes or microbes, hence enabling DNA protection and preservation in such materials. By implication, substantial organic carbon is therefore likely to be sequestered and protected in allophanic soils (Andisols) in the same way as demonstrated here for DNA, that is, predominantly by encapsulation within a tortuous network of nanopores and submicropores amidst stable nanoaggregates and microaggregates, rather than by chemisorption alone.
      Date
      2016-02-01
      Type
      Journal Article
      Publisher
      Elsevier B.V.
      Rights
      This is an author’s accepted version of an article published in the journal: Applied Clay Science. © 2016 Elsevier B.V.
      Collections
      • Science and Engineering Papers [2617]
      Show full item record  

      Usage

      Downloads, last 12 months
      24
       
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement