dc.contributor.author | Delbourgo, Daniel | en_NZ |
dc.contributor.author | Lei, Antonio | en_NZ |
dc.date.accessioned | 2016-04-05T00:02:53Z | |
dc.date.available | 2015 | en_NZ |
dc.date.available | 2016-04-05T00:02:53Z | |
dc.date.issued | 2015 | en_NZ |
dc.identifier.citation | Delbourgo, D., & Lei, A. (2015). Non-commutative Iwasawa theory for elliptic curves with multiplicative reduction. Mathematical Proceedings of the Cambridge Philosophical Society. http://doi.org/10.1017/S0305004115000535 | en |
dc.identifier.issn | 1469-8064 | en_NZ |
dc.identifier.uri | https://hdl.handle.net/10289/10022 | |
dc.description.abstract | Let E/ℚ be a semistable elliptic curve, and p ≠ 2 a prime of bad multiplicative reduction. For each Lie extension ℚ FT / ℚ with Galois group G∞ ≅ℤр ⋊ ℤ p ×, we construct p-adic L-functions interpolating Artin twists of the Hasse–Weil L-series of the curve E. Through the use of congruences, we next prove a formula for the analytic λ-invariant over the false Tate tower, analogous to Chern–Yang Lee's results on its algebraic counterpart. If one assumes the Pontryagin dual of the Selmer group belongs to the ℳℌ(G∞)-category, the leading terms of its associated Akashi series can then be computed, allowing us to formulate a non-commutative Iwasawa Main Conjecture in the multiplicative setting. | |
dc.format.mimetype | application/pdf | |
dc.language.iso | en | |
dc.publisher | Cambridge University Press (CUP) | en_NZ |
dc.rights | This is an author’s accepted version of an article published in the journal: Mathematical Proceedings of the Cambridge Philosophical Society. Copyright © Cambridge Philosophical Society 2015. | |
dc.title | Non-commutative Iwasawa theory for elliptic curves with multiplicative reduction | en_NZ |
dc.type | Journal Article | |
dc.identifier.doi | 10.1017/S0305004115000535 | |
dc.relation.isPartOf | Mathematical Proceedings of the Cambridge Philosophical Society | en_NZ |
pubs.begin-page | 11 | en_NZ |
pubs.declined | 2015-10-20T09:16:01.606+1300 | |
pubs.elements-id | 130039 | |
pubs.end-page | 38 | en_NZ |
pubs.issue | 01 | en_NZ |
pubs.publication-status | Accepted | en_NZ |
pubs.volume | 160 | en_NZ |