Show simple item record  

dc.contributor.authorDelbourgo, Danielen_NZ
dc.contributor.authorLei, Antonioen_NZ
dc.date.accessioned2016-04-05T00:02:53Z
dc.date.available2015en_NZ
dc.date.available2016-04-05T00:02:53Z
dc.date.issued2015en_NZ
dc.identifier.citationDelbourgo, D., & Lei, A. (2015). Non-commutative Iwasawa theory for elliptic curves with multiplicative reduction. Mathematical Proceedings of the Cambridge Philosophical Society. http://doi.org/10.1017/S0305004115000535en
dc.identifier.issn1469-8064en_NZ
dc.identifier.urihttps://hdl.handle.net/10289/10022
dc.description.abstractLet E/ℚ be a semistable elliptic curve, and p ≠ 2 a prime of bad multiplicative reduction. For each Lie extension ℚ FT / ℚ with Galois group G∞ ≅ℤр ⋊ ℤ p ×, we construct p-adic L-functions interpolating Artin twists of the Hasse–Weil L-series of the curve E. Through the use of congruences, we next prove a formula for the analytic λ-invariant over the false Tate tower, analogous to Chern–Yang Lee's results on its algebraic counterpart. If one assumes the Pontryagin dual of the Selmer group belongs to the ℳℌ(G∞)-category, the leading terms of its associated Akashi series can then be computed, allowing us to formulate a non-commutative Iwasawa Main Conjecture in the multiplicative setting.
dc.format.mimetypeapplication/pdf
dc.language.isoen
dc.publisherCambridge University Press (CUP)en_NZ
dc.rightsThis is an author’s accepted version of an article published in the journal: Mathematical Proceedings of the Cambridge Philosophical Society. Copyright © Cambridge Philosophical Society 2015.
dc.titleNon-commutative Iwasawa theory for elliptic curves with multiplicative reductionen_NZ
dc.typeJournal Article
dc.identifier.doi10.1017/S0305004115000535
dc.relation.isPartOfMathematical Proceedings of the Cambridge Philosophical Societyen_NZ
pubs.begin-page11en_NZ
pubs.declined2015-10-20T09:16:01.606+1300
pubs.elements-id130039
pubs.end-page38en_NZ
pubs.issue01en_NZ
pubs.publication-statusAccepteden_NZ
pubs.volume160en_NZ


Files in this item

This item appears in the following Collection(s)

Show simple item record