Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Computing and Mathematical Sciences
      • Computing and Mathematical Sciences Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Computing and Mathematical Sciences
      • Computing and Mathematical Sciences Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Steady state magnetic reconnection in planar geometries

      Craig, Ian J.D.; Henton, S.M.
      Thumbnail
      Files
      1994-Astrophysical-434-1.pdf
      Published version, 1.009Mb
      DOI
       10.1086/174716
      Find in your library  
      Citation
      Export citation
      Craig, I. J. D., & Henton, S. M. (1994). Steady state magnetic reconnection in planar geometries. Astrophysical Journal, 434(1), 192–199. http://doi.org/10.1086/174716
      Permanent Research Commons link: https://hdl.handle.net/10289/10193
      Abstract
      The problem of nonlinear, steady state magnetic reconnection in incompressible plasmas is considered. A self-consistent treatment is developed which allows a formal analytic solution of the resistive induction equation, valid for all sub-Alfvénic velocity fields. This solution relates the velocity stream function to the global magnetic field structure and highlights several key properties of the resistive system. In particular, the field lines are isobars of uniform current density and characteristics of the velocity stream function. The impact of this analysis on "fast" magnetic reconnection is then considered. Despite strong constraints on the flow topology - no separatrix flows are allowed - fast, nonlinear models can be developed self-consistently. It is shown that the reconnection rate is maintained against reductions in the plasma restrictivity by the increasing amplitude but decreasing width of the current layer aligned to the separatrix. It is concluded that "open" flow topologies allow fast reconnection to continue under conditions which lead to stalling in "closed" or periodic geometries.
      Date
      1994
      Type
      Journal Article
      Rights
      This article is published in the Astrophysical Journal. © 1994 The American Astronomical Society.
      Collections
      • Computing and Mathematical Sciences Papers [1454]
      Show full item record  

      Usage

      Downloads, last 12 months
      99
       
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement