Show simple item record  

dc.contributor.authorLitvinenko, Yuri E.en_NZ
dc.contributor.authorNoble, Patrick L.en_NZ
dc.date.accessioned2016-06-21T02:40:35Z
dc.date.available2016en_NZ
dc.date.available2016-06-21T02:40:35Z
dc.date.issued2016en_NZ
dc.identifier.citationLitvinenko, Y. E., & Noble, P. L. (2016). Comparison of the telegraph and hyperdiffusion approximations in cosmic-ray transport. Physics of Plasmas, 23(6). http://doi.org/10.1063/1.4953564en
dc.identifier.issn1089-7674en_NZ
dc.identifier.urihttps://hdl.handle.net/10289/10388
dc.description.abstractThe telegraph equation and its generalizations have been repeatedly considered in the models of diffusive cosmic-ray transport. Yet the telegraph model has well-known limitations, and analytical arguments suggest that a hyperdiffusion model should serve as a more accurate alternative to the telegraph model, especially on the timescale of a few scattering times. We present a detailed side-by-side comparison of an evolving particle density profile, predicted by the telegraph and hyperdiffusion models in the context of a simple but physically meaningful initial-value problem, compare the predictions with the solution based on the Fokker–Planck equation, and discuss the applicability of the telegraph and hyperdiffusion approximations to the description of strongly anisotropic particle distributions.
dc.format.mimetypeapplication/pdf
dc.language.isoen
dc.publisherAmerican Institute of Physics (AIP)en_NZ
dc.rightsThis article is published in the Physics of Plasmas. © 2016 American Institute of Physics (AIP).
dc.titleComparison of the telegraph and hyperdiffusion approximations in cosmic-ray transporten_NZ
dc.typeJournal Article
dc.identifier.doi10.1063/1.4953564en_NZ
dc.relation.isPartOfPhysics of Plasmasen_NZ
pubs.begin-page062901en_NZ
pubs.elements-id139263
pubs.end-page062901en_NZ
pubs.issue6en_NZ
pubs.notesQA journal:EBSCOen_NZ
pubs.organisational-group/Waikato
pubs.organisational-group/Waikato/FCMS
pubs.volume23en_NZ
uow.identifier.article-no062901


Files in this item

This item appears in the following Collection(s)

Show simple item record