dc.contributor.author | Broughan, Kevin A. | en_NZ |
dc.date.accessioned | 2016-07-04T01:50:14Z | |
dc.date.available | 1977 | en_NZ |
dc.date.available | 2016-07-04T01:50:14Z | |
dc.date.issued | 1977 | en_NZ |
dc.identifier.citation | Broughan, K. A. (1977). The boundedness principle characterizes second category subsets. Bulletin of the Australian Mathematical Society, 16(2), 257–265. http://doi.org/10.1017/S0004972700023285 | en |
dc.identifier.issn | 0004-9727 | en_NZ |
dc.identifier.uri | https://hdl.handle.net/10289/10505 | |
dc.description.abstract | Converses are proved for the Osgood (the Principle of Uniform Boundedness), Dini, and other well known. theorems. The notion of a continuous step function on a topological space is defined and a class of spaces identified for which each lower semicontinuous function is the pointwise limit of a monotonically increasing sequence of step functions. | en_NZ |
dc.format.mimetype | application/pdf | |
dc.language.iso | en | |
dc.rights | This article is published in the Bulletin of the Australian Mathematical Society. © 1977, Australian Mathematical Society. Used with permission | |
dc.title | The boundedness principle characterizes second category subsets | en_NZ |
dc.type | Journal Article | |
dc.identifier.doi | 10.1017/S0004972700023285 | en_NZ |
dc.relation.isPartOf | Bulletin of the Australian Mathematical Society | en_NZ |
pubs.begin-page | 257 | |
pubs.elements-id | 139084 | |
pubs.end-page | 265 | |
pubs.issue | 2 | en_NZ |
pubs.volume | 16 | en_NZ |
dc.identifier.eissn | 1755-1633 | en_NZ |