Show simple item record  

dc.contributor.authorLiesaputra, Veronicaen_NZ
dc.contributor.authorYongchareon, Siraen_NZ
dc.contributor.authorChaisiri, Sivadonen_NZ
dc.contributor.editorMotahariNezhad, HRen_NZ
dc.contributor.editorRecker, Jen_NZ
dc.contributor.editorWeidlich, Men_NZ
dc.coverage.spatialUniv Innsbruck, Innsbruck, Austriaen_NZ
dc.date.accessioned2016-08-01T00:15:16Z
dc.date.available2015en_NZ
dc.date.available2016-08-01T00:15:16Z
dc.date.issued2015en_NZ
dc.identifier.citationLiesaputra, V., Yongchareon, S., & Chaisiri, S. (2015). Efficient Process Model Discovery Using Maximal Pattern Mining. In H. MotahariNezhad, J. Recker, & M. Weidlich (Eds.), Proceedings of 13th International Conference, BPM 2015, Innsbruck, Austria, August 31 -- September 3 (Vol. 9253, pp. 441–456). Springer International Publishing. http://doi.org/10.1007/978-3-319-23063-4_29en
dc.identifier.isbn978-3-319-23062-7en_NZ
dc.identifier.issn0302-9743en_NZ
dc.identifier.urihttps://hdl.handle.net/10289/10567
dc.description.abstractIn recent years, process mining has become one of the most important and promising areas of research in the field of business process management as it helps businesses understand, analyze, and improve their business processes. In particular, several proposed techniques and algorithms have been proposed to discover and construct process models from workflow execution logs (i.e., event logs). With the existing techniques, mined models can be built based on analyzing the relationship between any two events seen in event logs. Being restricted by that, they can only handle special cases of routing constructs and often produce unsound models that do not cover all of the traces seen in the log. In this paper, we propose a novel technique for process discovery using Maximal Pattern Mining (MPM) where we construct patterns based on the whole sequence of events seen on the traces—ensuring the soundness of the mined models. Our MPM technique can handle loops (of any length), duplicate tasks, non-free choice constructs, and long distance dependencies. Our evaluation shows that it consistently achieves better precision, replay fitness and efficiency than the existing techniques.
dc.format.mimetypeapplication/pdf
dc.language.isoen
dc.publisherSpringer International Publishingen_NZ
dc.rightsThis is an author’s accepted version of an article published in BPM2015, LNCS 9253. The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-23063-4_29. © Springer International Publishing Switzerland 2016
dc.source13th International Conference on Business Process Management (BPM)en_NZ
dc.subjectScience & Technologyen_NZ
dc.subjectTechnologyen_NZ
dc.subjectComputer Science, Information Systemsen_NZ
dc.subjectComputer Science, Interdisciplinary Applicationsen_NZ
dc.subjectComputer Science, Theory & Methodsen_NZ
dc.subjectComputer Scienceen_NZ
dc.subjectEVENT LOGSen_NZ
dc.subjectTRACESen_NZ
dc.titleEfficient Process Model Discovery Using Maximal Pattern Miningen_NZ
dc.typeConference Contribution
dc.identifier.doi10.1007/978-3-319-23063-4_29en_NZ
dc.relation.isPartOfProceedings of 13th International Conference, BPM 2015, Innsbruck, Austria, August 31 -- September 3en_NZ
pubs.begin-page441
pubs.elements-id129965
pubs.end-page456
pubs.finish-date2015-09-03en_NZ
pubs.publication-statusPublisheden_NZ
pubs.start-date2015-08-31en_NZ
pubs.volume9253en_NZ


Files in this item

This item appears in the following Collection(s)

Show simple item record