Show simple item record  

dc.contributor.authorBravo-Marquez, Felipeen_NZ
dc.contributor.authorFrank, Eibeen_NZ
dc.contributor.authorPfahringer, Bernharden_NZ
dc.contributor.editorKaminka, GAen_NZ
dc.contributor.editorFox, Men_NZ
dc.contributor.editorBouquet, Pen_NZ
dc.contributor.editorHullermeier, Een_NZ
dc.contributor.editorDignum, Ven_NZ
dc.contributor.editorDignum, Fen_NZ
dc.contributor.editorVanHarmelen, Fen_NZ
dc.coverage.spatialHague, NETHERLANDSen_NZ
dc.date.accessioned2016-11-28T00:51:20Z
dc.date.available2016-01-01en_NZ
dc.date.available2016-11-28T00:51:20Z
dc.date.issued2016-01-01en_NZ
dc.identifier.citationBravo-Marquez, F., Frank, E., & Pfahringer, B. (2016). Annotate-Sample-Average (ASA): A New Distant Supervision Approach for Twitter Sentiment Analysis. In G. Kaminka, M. Fox, P. Bouquet, E. Hullermeier, V. Dignum, F. Dignum, & F. VanHarmelen (Eds.), ECAI 2016: 22ND EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE (Vol. 285, pp. 498–506). Hague, NETHERLANDS: IOS Press. http://doi.org/10.3233/978-1-61499-672-9-498en
dc.identifier.isbn978-1-61499-671-2en_NZ
dc.identifier.issn0922-6389en_NZ
dc.identifier.urihttps://hdl.handle.net/10289/10753
dc.description.abstractThe classification of tweets into polarity classes is a popular task in sentiment analysis. State-of-the-art solutions to this problem are based on supervised machine learning models trained from manually annotated examples. A drawback of these approaches is the high cost involved in data annotation. Two freely available resources that can be exploited to solve the problem are: 1) large amounts of unlabelled tweets obtained from the Twitter API and 2) prior lexical knowledge in the form of opinion lexicons. In this paper, we propose Annotate-Sample-Average (ASA), a distant supervision method that uses these two resources to generate synthetic training data for Twitter polarity classification. Positive and negative training instances are generated by sampling and averaging unlabelled tweets containing words with the corresponding polarity. Polarity of words is determined from a given polarity lexicon. Our experimental results show that the training data generated by ASA (after tuning its parameters) produces a classifier that performs significantly better than a classifier trained from tweets annotated with emoticons and a classifier trained, without any sampling and averaging, from tweets annotated according to the polarity of their words.
dc.format.mimetypeapplication/pdf
dc.language.isoen
dc.publisherIOS Pressen_NZ
dc.relation.urihttp://www.cs.waikato.ac.nz/~fjb11/publications/ecai2016.pdf
dc.rights© 2016 The Authors and IOS Press. This article is published online with Open Access by IOS Press and distributed under the terms of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
dc.source22nd European Conference on Artificial Intelligence (ECAI)en_NZ
dc.subjectScience & Technologyen_NZ
dc.subjectTechnologyen_NZ
dc.subjectComputer Science, Artificial Intelligenceen_NZ
dc.subjectComputer Scienceen_NZ
dc.subjectMachine learning
dc.subjectMachine learning
dc.titleAnnotate-Sample-Average (ASA): A New Distant Supervision Approach for Twitter Sentiment Analysisen_NZ
dc.typeConference Contribution
dc.identifier.doi10.3233/978-1-61499-672-9-498en_NZ
dc.relation.isPartOfECAI 2016: 22ND EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCEen_NZ
pubs.begin-page498
pubs.elements-id143273
pubs.end-page506
pubs.finish-date2016-09-02en_NZ
pubs.publication-statusPublisheden_NZ
pubs.start-date2016-08-29en_NZ
pubs.volume285en_NZ


Files in this item

This item appears in the following Collection(s)

Show simple item record