Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Computing and Mathematical Sciences
      • Computing and Mathematical Sciences Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Computing and Mathematical Sciences
      • Computing and Mathematical Sciences Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Building a Twitter opinion lexicon from automatically-annotated tweets

      Bravo-Marquez, Felipe; Frank, Eibe; Pfahringer, Bernhard
      Thumbnail
      Files
      Building-a-Twitter-Opinion-paper.pdf
      Accepted version, 717.2Kb
      DOI
       10.1016/j.knosys.2016.05.018
      Find in your library  
      Citation
      Export citation
      Bravo-Marquez, F., Frank, E., & Pfahringer, B. (2016). Building a Twitter opinion lexicon from automatically-annotated tweets. KNOWLEDGE-BASED SYSTEMS, 108, 65–78. http://doi.org/10.1016/j.knosys.2016.05.018
      Permanent Research Commons link: https://hdl.handle.net/10289/10754
      Abstract
      Opinion lexicons, which are lists of terms labelled by sentiment, are widely used resources to support automatic sentiment analysis of textual passages. However, existing resources of this type exhibit some limitations when applied to social media messages such as tweets (posts in Twitter), because they are unable to capture the diversity of informal expressions commonly found in this type of media.

      In this article, we present a method that combines information from automatically annotated tweets and existing hand-made opinion lexicons to expand an opinion lexicon in a supervised fashion. The expanded lexicon contains part-of-speech (POS) disambiguated entries with a probability distribution for positive, negative, and neutral polarity classes, similarly to SentiWordNet.

      To obtain this distribution using machine learning, we propose word-level attributes based on (a) the morphological information conveyed by POS tags and (b) associations between words and the sentiment expressed in the tweets that contain them. We consider tweets with both hard and soft sentiment labels. The sentiment associations are modelled in two different ways: using point-wise-mutual-information semantic orientation (PMI-SO), and using stochastic gradient descent semantic orientation (SGD-SO), which learns a linear relationship between words and sentiment. The training dataset is labelled by a seed lexicon formed by combining multiple hand-annotated lexicons.

      Our experimental results show that our method outperforms the three-dimensional word-level polarity classification performance obtained by using PMI-SO alone. This is significant because PMI-SO is a state-of-the-art measure for establishing world-level sentiment. Additionally, we show that lexicons created with our method achieve signifi- cant improvements over SentiWordNet for classifying tweets into polarity classes, and also outperform SentiStrength in the majority of the experiments.
      Date
      2016-09-15
      Type
      Journal Article
      Publisher
      Elsevier
      Rights
      This is an author’s accepted version of an article published in the journal: Knowledge Based Systems. © 2016 Elsevier.
      Collections
      • Computing and Mathematical Sciences Papers [1455]
      Show full item record  

      Usage

      Downloads, last 12 months
      135
       
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement