Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Computing and Mathematical Sciences
      • Computing and Mathematical Sciences Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Computing and Mathematical Sciences
      • Computing and Mathematical Sciences Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Bi-level document image compression using layout information

      Inglis, Stuart J.; Witten, Ian H.
      Thumbnail
      Files
      Bi-level document.pdf
      185.2Kb
      DOI
       10.1109/DCC.1996.488374
      Find in your library  
      Citation
      Export citation
      Inglis, S. J., & Witten, I. H. (1996). Bi-level document image compression using layout information. In J. A. Storer & M. Cohn (Eds.), Proceedings of the DCC ’96, Data Compression Conference (pp. 442–450). Washington, DC, USA: IEEE. https://doi.org/10.1109/DCC.1996.488374
      Permanent Research Commons link: https://hdl.handle.net/10289/11074
      Abstract
      Most bi-level images stored on computers today comprise scanned text, and are stored using generic bi-level image technology based either on classical run-length coding, such as the CCITT Group 4 method, or on modern schemes such as JBIG that predict pixels from their local image context. However, image compression methods that are tailored specifically for images known to contain printed text can provide noticeably superior performance because they effectively enlarge the context to the character level, at least for those predictions for which such a context is relevant. To deal effectively with general documents that contain text and pictures, it is necessary to detect layout and structural information from the image, and employ different compression techniques for different parts of the image. The authors extend previous work in document image compression in two ways. First, we include automatic discrimination between text and non-text zones in an image. Second, the system is tested on a large real-world image corpus.
      Date
      1996
      Type
      Conference Contribution
      Publisher
      IEEE
      Rights
      This is an author’s accepted version of an article published in Proceedings of the DCC '96, Data Compression Conference. © 1996 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
      Collections
      • Computing and Mathematical Sciences Papers [1455]
      Show full item record  

      Usage

      Downloads, last 12 months
      118
       
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement