Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Computing and Mathematical Sciences
      • Computing and Mathematical Sciences Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Computing and Mathematical Sciences
      • Computing and Mathematical Sciences Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Using machine learning techniques to track individuals & their fitness activities

      Reichherzer, Thomas; Timm, Mikayla; Earley, Nathan; Reyes, Nathaniel; Kumar, Vimal
      Thumbnail
      Files
      CATA_2017_paper_67_finalcopy.pdf
      Accepted version, 176.0Kb
      Find in your library  
      Citation
      Export citation
      Reichherzer, T., Timm, M., Earley, N., Reyes, N., & Kumar, V. (2017). Using machine learning techniques to track individuals & their fitness activities. In A. Bossard, G. Lee, & L. Miller (Eds.), Proceedings of 32nd International Conference on Computers and Their Applications, March, 20-22, 2017, Honolulu, Hawaii, USA (pp. 119–124). Winona, MN, USA: ISCA.
      Permanent Research Commons link: https://hdl.handle.net/10289/11113
      Abstract
      The use of wearable devices for fitness and health tracking is on an upward curve with a range of devices now available from a number of manufacturers. The devices work with smart devices to exchange data via Bluetooth communication protocol. This paper presents the results of an initial study on the security and privacy weaknesses of wearable fitness devices. It discusses methods to 1) capture and process data sent from a wearable device to its paired smartphone during synchronization and 2) analyze the records to track individuals and make predictions. The data analysis methods use supervised machine-learning techniques to train a classifier for associating synchronization records with the individuals, their physical activities, and conditions under which they were performed. Results of the study show that the methods allow individuals and their activities to be tracked, both of which infringe on the privacy of the user. The paper also provides recommendations on improving the security of wearable devices based on the initial research results.
      Date
      2017
      Type
      Conference Contribution
      Publisher
      ISCA
      Rights
      This is the author's accepted version. Copyright © 2017 by the International Society for Computers and Their Applications.
      Collections
      • Computing and Mathematical Sciences Papers [1452]
      Show full item record  

      Usage

      Downloads, last 12 months
      161
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement