Show simple item record  

dc.contributor.authorCavenagh, Nicholas J.en_NZ
dc.contributor.authorGriggs, Terry S.en_NZ
dc.date.accessioned2017-08-31T02:32:03Z
dc.date.available2017en_NZ
dc.date.available2017-08-31T02:32:03Z
dc.date.issued2017en_NZ
dc.identifier.citationCavenagh, N. J., & Griggs, T. S. (2017). Subcubic trades in Steiner triple systems. Discrete Mathematics, 340(6), 1351–1358. https://doi.org/10.1016/j.disc.2016.10.021en
dc.identifier.issn0012-365Xen_NZ
dc.identifier.urihttps://hdl.handle.net/10289/11298
dc.description.abstractWe consider the problem of classifying trades in Steiner triple systems such that each block of the trade contains one of three fixed elements. We show that the fundamental building blocks for such trades are 3-regular graphs that are 1-factorisable. In the process we also generate all possible 2- and 3-way simultaneous edge colourings of graphs with maximum degree 3 using at most 3 colours, where multiple edges but not loops are allowed. Moreover, we generate all possible Latin trades within three rows.
dc.format.mimetypeapplication/pdf
dc.language.isoenen_NZ
dc.publisherElsevier Science BVen_NZ
dc.rightsThis is an author’s accepted version of an article published in the journal: Discrete Mathematics. © 2017 Elsevier.
dc.subjectScience & Technologyen_NZ
dc.subjectPhysical Sciencesen_NZ
dc.subjectMathematicsen_NZ
dc.subjectSteiner triple systemen_NZ
dc.subjectTradeen_NZ
dc.subjectSimultaneous edge colouringen_NZ
dc.subjectLatin tradeen_NZ
dc.titleSubcubic trades in Steiner triple systemsen_NZ
dc.typeJournal Article
dc.identifier.doi10.1016/j.disc.2016.10.021en_NZ
dc.relation.isPartOfDiscrete Mathematicsen_NZ
pubs.begin-page1351
pubs.elements-id143516
pubs.end-page1358
pubs.issue6en_NZ
pubs.publication-statusPublisheden_NZ
pubs.volume340en_NZ
dc.identifier.eissn1872-681Xen_NZ


Files in this item

This item appears in the following Collection(s)

Show simple item record