Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Southern Hemisphere bog persists as a strong carbon sink during droughts

      Goodrich, Jordan Paul; Campbell, David I.; Schipper, Louis A.
      Thumbnail
      Files
      bg-14-4563-2017.pdf
      Published version, 1012.Kb
      DOI
       10.5194/bg-14-4563-2017
      Link
       www.biogeosciences.net
      Find in your library  
      Citation
      Export citation
      Goodrich, J. P., Campbell, D. I., & Schipper, L. A. (2017). Southern Hemisphere bog persists as a strong carbon sink during droughts. Biogeosciences, 14, 4563–4576. https://doi.org/10.5194/bg-14-4563-2017
      Permanent Research Commons link: https://hdl.handle.net/10289/11373
      Abstract
      Peatland ecosystems have been important global carbon sinks throughout the Holocene. Most of the research on peatland carbon budgets and effects of variable weather conditions has been done in Northern Hemisphere Sphagnum-dominated systems. Given their importance in other geographic and climatic regions, a better understanding of peatland carbon dynamics is needed across the spectrum of global peatland types. In New Zealand, much of the historic peatland area has been drained for agriculture but little is known about rates of carbon exchange and storage in unaltered peatland remnants that are dominated by the jointed wire-rush, Empodisma robustum. We used eddy covariance to measure ecosystem-scale CO₂ and CH₄ fluxes and a water balance approach to estimate the sub-surface flux of dissolved organic carbon from the largest remaining raised peat bog in New Zealand, Kopuatai bog. The net ecosystem carbon balance (NECB) was estimated over four years, which included two drought summers, a relatively wet summer, and a meteorologically average summer. In all measurement years, the bog was a substantial sink for carbon, ranging from 134.7 gC m⁻² yr⁻¹ to 216.9 gC m⁻² yr⁻¹, owing to the large annual net ecosystem production (−161.8 to −244.9 gCO2-C m⁻² yr⁻¹). Annual methane fluxes were large relative to most Northern Hemisphere peatlands (14.2 to 21.9 gCH4-C  m⁻² yr⁻¹1), although summer and autumn emissions were highly sensitive to dry conditions leading to very predictable seasonality according to water table position. The annual flux of dissolved organic carbon was similar in magnitude to methane emissions but less variable, ranging from 11.7 to 12.8 gC m⁻² yr⁻¹. Dry conditions experienced during late summer droughts led to significant reductions in annual carbon storage, which resulted nearly equally from enhanced ecosystem respiration due to lowered water tables and increased temperatures, and from reduced gross primary production due to vapor pressure deficit-related stresses to the vegetation. However, the net C uptake of Kopuatai bog during drought years was large relative to even the maximum reported NECB from Northern Hemisphere bogs. Furthermore, GWP fluxes indicated the bog was a strong sink for greenhouse gases in all years despite the relatively large annual methane emissions. Our results suggest that adaptations of E. robustum to dry conditions lead to a resilient peatland drought response of the NECB.
      Date
      2017
      Type
      Journal Article
      Publisher
      Copernicus Publications
      Rights
      © Author(s) 2017. This work is distributed under the Creative Commons Attribution 3.0 License.
      Supplementary material
       hdl.handle.net
      Collections
      • Science and Engineering Papers [3122]
      Show full item record  

      Usage

      Downloads, last 12 months
      89
       
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement