Show simple item record  

dc.contributor.authorBroughan, Kevin A.en_NZ
dc.contributor.authorTrudgian, Timen_NZ
dc.date.accessioned2017-10-12T20:29:17Z
dc.date.available2015en_NZ
dc.date.available2017-10-12T20:29:17Z
dc.date.issued2015en_NZ
dc.identifier.citationBroughan, K. A., & Trudgian, T. (2015). Robin’s inequality for 11-free integers. Integers : Electronic Journal of Combinatorial Number Theory, 15.en
dc.identifier.issn1553-1732en_NZ
dc.identifier.urihttps://hdl.handle.net/10289/11397
dc.description.abstractLet σ(n) denote the sum of divisors function, and let ϒ be Euler’s constant. We prove that if there is an n≥5041 for which σ(n)≥eϒn log log n, then n must be divisible by the eleventh power of some prime.
dc.format.mimetypeapplication/pdf
dc.language.isoen
dc.publisherState University of West Georgia, Charles University, and DIMATIAen_NZ
dc.relation.urihttp://math.colgate.edu/~integers/vol15.html
dc.rights© 2015 copyright with the authors.
dc.titleRobin's inequality for 11-free integersen_NZ
dc.typeJournal Article
dc.relation.isPartOfIntegers : Electronic Journal of Combinatorial Number Theoryen_NZ
pubs.elements-id207342
pubs.volume15en_NZ


Files in this item

This item appears in the following Collection(s)

Show simple item record