dc.contributor.author | Broughan, Kevin A. | en_NZ |
dc.contributor.author | Trudgian, Tim | en_NZ |
dc.date.accessioned | 2017-10-12T20:29:17Z | |
dc.date.available | 2015 | en_NZ |
dc.date.available | 2017-10-12T20:29:17Z | |
dc.date.issued | 2015 | en_NZ |
dc.identifier.citation | Broughan, K. A., & Trudgian, T. (2015). Robin’s inequality for 11-free integers. Integers : Electronic Journal of Combinatorial Number Theory, 15. | en |
dc.identifier.issn | 1553-1732 | en_NZ |
dc.identifier.uri | https://hdl.handle.net/10289/11397 | |
dc.description.abstract | Let σ(n) denote the sum of divisors function, and let ϒ be Euler’s constant. We prove that if there is an n≥5041 for which σ(n)≥eϒn log log n, then n must be divisible by the eleventh power of some prime. | |
dc.format.mimetype | application/pdf | |
dc.language.iso | en | |
dc.publisher | State University of West Georgia, Charles University, and DIMATIA | en_NZ |
dc.relation.uri | http://math.colgate.edu/~integers/vol15.html | |
dc.rights | © 2015 copyright with the authors. | |
dc.title | Robin's inequality for 11-free integers | en_NZ |
dc.type | Journal Article | |
dc.relation.isPartOf | Integers : Electronic Journal of Combinatorial Number Theory | en_NZ |
pubs.elements-id | 207342 | |
pubs.volume | 15 | en_NZ |