dc.contributor.author | Kalnins, Ernie G. | |
dc.contributor.author | Miller, W., Jr. | |
dc.contributor.author | Pogosyan, G.S. | |
dc.date.accessioned | 2008-10-24T02:28:40Z | |
dc.date.available | 2008-10-24T02:28:40Z | |
dc.date.issued | 2000-05 | |
dc.identifier.citation | Kalnins, E.G., Miller, W., Jr. & Pogosyan, G.S. (2000). Coulomb-oscillator duality in spaces of constant curvature. Journal of Mathematical Physics, 41, 2629. | en_US |
dc.identifier.issn | 0022-2488 | |
dc.identifier.uri | https://hdl.handle.net/10289/1149 | |
dc.description.abstract | In this paper we construct generalizations to spheres of the well-known Levi-Civita, Kustaanheimo–Steifel, and Hurwitz regularizing transformations in Euclidean spaces of dimensions two, three, and five. The corresponding classical and quantum mechanical analogs of the Kepler–Coulomb problem on these spheres are discussed. | en_US |
dc.format.mimetype | application/pdf | |
dc.language.iso | en | |
dc.rights | Copyright 2000 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in the Journal of Mathematical Physics and may be found at http://jmp.aip.org/jmp/top.jsp | en_US |
dc.subject | Mathematics | en_US |
dc.title | Coulomb-oscillator duality in spaces of constant curvature | en_US |
dc.type | Journal Article | en_US |
dc.identifier.doi | 10.1063/1.533263 | en_US |
dc.relation.isPartOf | Journal of Mathematical Physics | en_NZ |
pubs.begin-page | 2629 | en_NZ |
pubs.elements-id | 41318 | |
pubs.end-page | 2657 | en_NZ |
pubs.issue | 5 | en_NZ |
pubs.volume | 41 | en_NZ |