Orthogonal trades in complete sets of MOLS
Loading...
Permanent Link
Publisher link
Rights
Abstract
Let Bₚ be the Latin square given by the addition table for the integers modulo an odd prime p (i.e. the Cayley table for (Zₚ, +)). Here we consider the properties of Latin trades in Bₚ which preserve orthogonality with one of the p−1 MOLS given by the finite field construction. We show that for certain choices of the orthogonal mate, there is a lower bound logarithmic in p for the number of times each symbol occurs in such a trade, with an overall lower bound of (log p)² / log log p for the size of such a trade. Such trades imply the existence of orthomorphisms of the cyclic group which differ from a linear orthomorphism by a small amount. We also show that any transversal in Bₚ hits the main diagonal either p or at most p − log₂ p – 1 times. Finally, if p ≡ 1 (mod 6) we show the existence of a Latin square which is orthogonal to Bₚ and which contains a 2 × 2 subsquare.
Citation
Cavenagh, N. J., Donovan, D. M., & Demirkale, F. (2017). Orthogonal trades in complete sets of MOLS. The Electronic Journal of Combinatorics, 24(3).
Type
Series name
Date
Publisher
The Electronic Journal of Combinatorics