dc.contributor.author | Cavenagh, Nicholas J. | en_NZ |
dc.contributor.author | Donovan, Diane M. | en_NZ |
dc.contributor.author | Demirkale, Fatih | en_NZ |
dc.date.accessioned | 2017-11-26T23:04:19Z | |
dc.date.available | 2017 | en_NZ |
dc.date.available | 2017-11-26T23:04:19Z | |
dc.date.issued | 2017 | en_NZ |
dc.identifier.citation | Cavenagh, N. J., Donovan, D. M., & Demirkale, F. (2017). Orthogonal trades in complete sets of MOLS. The Electronic Journal of Combinatorics, 24(3). | en |
dc.identifier.issn | 1077-8926 | en_NZ |
dc.identifier.uri | https://hdl.handle.net/10289/11516 | |
dc.description.abstract | Let Bₚ be the Latin square given by the addition table for the integers modulo an odd prime p (i.e. the Cayley table for (Zₚ, +)). Here we consider the properties of Latin trades in Bₚ which preserve orthogonality with one of the p−1 MOLS given by the finite field construction. We show that for certain choices of the orthogonal mate, there is a lower bound logarithmic in p for the number of times each symbol occurs in such a trade, with an overall lower bound of (log p)² / log log p for the size of such a trade. Such trades imply the existence of orthomorphisms of the cyclic group which differ from a linear orthomorphism by a small amount. We also show that any transversal in Bₚ hits the main diagonal either p or at most p − log₂ p – 1 times. Finally, if p ≡ 1 (mod 6) we show the existence of a Latin square which is orthogonal to Bₚ and which contains a 2 × 2 subsquare. | |
dc.format.mimetype | application/pdf | |
dc.language.iso | en | |
dc.publisher | The Electronic Journal of Combinatorics | en_NZ |
dc.relation.uri | http://www.combinatorics.org/ojs/index.php/eljc/article/view/v24i3p15 | en_NZ |
dc.subject | mathematics | en_NZ |
dc.subject | MOLS | en_NZ |
dc.subject | trade | en_NZ |
dc.subject | orthomorphism | en_NZ |
dc.subject | transversal | en_NZ |
dc.subject | Orthogonal array | |
dc.subject | MOLS | |
dc.subject | trade | |
dc.subject | orthomorphism | |
dc.subject | transversal | |
dc.title | Orthogonal trades in complete sets of MOLS | en_NZ |
dc.type | Journal Article | |
dc.relation.isPartOf | The Electronic Journal of Combinatorics | en_NZ |
pubs.elements-id | 201206 | |
pubs.issue | 3 | en_NZ |
pubs.volume | 24 | en_NZ |
uow.identifier.article-no | P3.15 | |