Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Computing and Mathematical Sciences
      • Computing and Mathematical Sciences Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Computing and Mathematical Sciences
      • Computing and Mathematical Sciences Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Estimating the spatial distribution of crime events around a football stadium from georeferenced tweets

      Ristea, Alina; Kurland, Justin; Resch, Bernd; Leitner, Michael; Langford, Chad
      Thumbnail
      Files
      Estimating the Spatial Distribution.pdf
      Published version, 2.223Mb
      DOI
       10.3390/ijgi7020043
      Find in your library  
      Citation
      Export citation
      Ristea, A., Kurland, J., Resch, B., Leitner, M., & Langford, C. (2018). Estimating the spatial distribution of crime events around a football stadium from georeferenced tweets. ISPRS International Journal of Geo-Information, 7(2). https://doi.org/10.3390/ijgi7020043
      Permanent Research Commons link: https://hdl.handle.net/10289/11739
      Abstract
      Crowd-based events, such as football matches, are considered generators of crime. Criminological research on the influence of football matches has consistently uncovered differences in spatial crime patterns, particularly in the areas around stadia. At the same time, social media data mining research on football matches shows a high volume of data created during football events. This study seeks to build on these two research streams by exploring the spatial relationship between crime events and nearby Twitter activity around a football stadium, and estimating the possible influence of tweets for explaining the presence or absence of crime in the area around a football stadium on match days. Aggregated hourly crime data and geotagged tweets for the same area around the stadium are analysed using exploratory and inferential methods. Spatial clustering, spatial statistics, text mining as well as a hurdle negative binomial logistic regression for spatiotemporal explanations are utilized in our analysis. Findings indicate a statistically significant spatial relationship between three crime types (criminal damage, theft and handling, and violence against the person) and tweet patterns, and that such a relationship can be used to explain future incidents of crime.
      Date
      2018
      Type
      Journal Article
      Publisher
      MDPI AG
      Rights
      © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
      Collections
      • Computing and Mathematical Sciences Papers [1452]
      Show full item record  

      Usage

      Downloads, last 12 months
      77
       
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement