Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Thermorudis pharmacophila sp nov., a novel member of the class Thermomicrobia isolated from geothermal soil, and emended descriptions of Thermomicrobium roseum, Thermomicrobium carboxidum, Thermorudis peleae and Sphaerobacter thermophilus

      Houghton, Karen M.; Morgan, Xochitl C.; Lagutin, Kirill; MacKenzie, Andrew D.; Vyssotskii, Mikhail; Mitchell, Kevin A.; McDonald, Ian R.; Morgan, Hugh W.; Power, Jean F.; Moreau, John W.; Hanssen, Eric; Stott, Matthew B.
      Thumbnail
      Files
      Thermorudis.pdf
      Accepted version, 3.384Mb
      DOI
       10.1099/ijsem.0.000598
      Find in your library  
      Citation
      Export citation
      Houghton, K. M., Morgan, X. C., Lagutin, K., MacKenzie, A. D., Vyssotskii, M., Mitchell, K. A., … Stott, M. B. (2015). Thermorudis pharmacophila sp nov., a novel member of the class Thermomicrobia isolated from geothermal soil, and emended descriptions of Thermomicrobium roseum, Thermomicrobium carboxidum, Thermorudis peleae and Sphaerobacter thermophilus. International Journal of Systematic and Evolutionary Microbiology, 65, 4479–4487. https://doi.org/10.1099/ijsem.0.000598
      Permanent Research Commons link: https://hdl.handle.net/10289/11806
      Abstract
      An aerobic, thermophilic and cellulolytic bacterium, designated strain WKT50.2T, was isolated from geothermal soil at Waikite, New Zealand. Strain WKT50.2T grew at 53–76 °C and at pH 5.9–8.2. The DNA G+C content was 58.4 mol%. The major fatty acids were 12-methyl C18 : 0 and C18 : 0. Polar lipids were all linked to long-chain 1,2-diols, and comprised 2-acylalkyldiol-1-O-phosphoinositol (diolPI), 2-acylalkyldiol-1-O-phosphoacylmannoside (diolP-acylMan), 2-acylalkyldiol-1-O-phosphoinositol acylmannoside (diolPI-acylMan) and 2-acylalkyldiol-1-O-phosphoinositol mannoside (diolPI-Man). Strain WKT50.2T utilized a range of cellulosic substrates, alcohols and organic acids for growth, but was unable to utilize monosaccharides. Robust growth of WKT50.2T was observed on protein derivatives. WKT50.2T was sensitive to ampicillin, chloramphenicol, kanamycin, neomycin, polymyxin B, streptomycin and vancomycin. Metronidazole, lasalocid A and trimethoprim stimulated growth. Phylogenetic analysis of 16S rRNA gene sequences showed that WKT50.2T belonged to the class Thermomicrobia within the phylum Chloroflexi, and was most closely related to Thermorudis peleae KI4T (99.6% similarity). DNA–DNA hybridization between WKT50.2T and Thermorudis peleae DSM 27169T was 18.0%. Physiological and biochemical tests confirmed the phenotypic and genotypic differentiation of strain WKT50.2T from Thermorudis peleae KI4T and other members of the Thermomicrobia. On the basis of its phylogenetic position and phenotypic characteristics, we propose that strain WKT50.2T represents a novel species, for which the name Thermorudis pharmacophila sp. nov. is proposed, with the type strain WKT50.2T ( = DSM 26011T = ICMP 20042T). Emended descriptions of Thermomicrobium roseum, Thermomicrobium carboxidum, Thermorudis peleae and Sphaerobacter thermophilus are also proposed, and include the description of a novel respiratory quinone, MK-8 2,3-epoxide (23%), in Thermomicrobium roseum.
      Date
      2015
      Type
      Journal Article
      Publisher
      Microbiology Society
      Rights
      This is an author’s accepted version of an article published in the journal: International Journal of Systematic and Evolutionary Microbiology. © 2015 IUMS Institute of Geological and Nuclear Sciences (GND), New Zealand.
      Collections
      • Science and Engineering Papers [3124]
      Show full item record  

      Usage

      Downloads, last 12 months
      93
       
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement