Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Additive manufacturing of Ti-6Al-4V with added boron: Microstructure and hardness modification

      Jackson, Benjamin Ivan; Torrens, Rob; Bolzoni, Leandro; Yang, Fei; Fry, Mike; Mukhtar, Aamir
      Thumbnail
      Files
      Additive Manufacturing of Ti-6Al-4V with Added Boron.pdf
      Accepted version, 1.320Mb
      DOI
       10.4028/www.scientific.net/KEM.770.165
      Link
       www.scientific.net
      Find in your library  
      Citation
      Export citation
      Jackson, B., Torrens, R., Bolzoni, L., Yang, F., Fry, M., & Mukhtar, A. (2018). Additive manufacturing of Ti-6Al-4V with added boron: Microstructure and hardness modification. Key Engineering Materials, 770, 165–173. https://doi.org/10.4028/www.scientific.net/KEM.770.165
      Permanent Research Commons link: https://hdl.handle.net/10289/11908
      Abstract
      Titanium alloy composites with titanium boride (TiB) discontinuous reinforcement have shown improved performance in terms of strength, stiffness, and hardness. Producing this composite through selective laser melting (SLM) can combine the advantages of freeform design with the ability to produce TiB reinforcement in-situ. In this study, SLM was used to consolidate a pre-alloyed Ti-6Al-4V (Ti64) and amorphous boron (B) powder mixture with the intent of producing 1.5wt% TiB reinforcement in a Ti64 matrix. The processing parameters of laser power and scanning speed were investigated for their effect on the density, microstructures, and hardness of the composite material. The results showed that the boron and Ti64 composite could achieve a density greater than 99.4%. Furthermore, it was found that processing parameters changed the microstructural features of the material. The higher the energy density employed the more homogenous the distribution of boron modified material. Macro features were also observed with laser paths being clearly evident in the subsurface microstructure. Micro-hardness testing and density measurement also showed a corresponding increase with increasing energy density. Maximum hardness of 392.4HV was achieved in the composite compared to 354.2HV in SLM fabricated Ti64.
      Date
      2018
      Type
      Journal Article
      Publisher
      Trans Tech Publications
      Rights
      This is an author’s accepted version of an article published in the journal: Key Engineering Materials. © 2018 Trans Tech Publications, Switzerland.
      Collections
      • Science and Engineering Papers [3124]
      Show full item record  

      Usage

      Downloads, last 12 months
      134
       
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement