Show simple item record  

dc.contributor.authorWilson, Marcus T.en_NZ
dc.contributor.authorFulcher, Ben D.en_NZ
dc.contributor.authorFung, Park K.en_NZ
dc.contributor.authorRobinson, P.A.en_NZ
dc.contributor.authorFornito, Alexen_NZ
dc.contributor.authorRogasch, Nigel C.en_NZ
dc.date.accessioned2018-07-30T22:17:29Z
dc.date.available2018-06-01en_NZ
dc.date.available2018-07-30T22:17:29Z
dc.date.issued2018en_NZ
dc.identifier.citationWilson, M. T., Fulcher, B. D., Fung, P. K., Robinson, P. A., Fornito, A., & Rogasch, N. C. (2018). Biophysical modeling of neural plasticity induced by transcranial magnetic stimulation. Clinical Neurophysiology, 129(6), 1230–1241. https://doi.org/10.1016/j.clinph.2018.03.018en
dc.identifier.issn1388-2457en_NZ
dc.identifier.urihttps://hdl.handle.net/10289/11994
dc.description.abstractTranscranial magnetic stimulation (TMS) is a widely used noninvasive brain stimulation method capable of inducing plastic reorganisation of cortical circuits in humans. Changes in neural activity following TMS are often attributed to synaptic plasticity via process of long-term potentiation and depression (LTP/LTD). However, the precise way in which synaptic processes such as LTP/LTD modulate the activity of large populations of neurons, as stimulated en masse by TMS, are unclear. The recent development of biophysical models, which incorporate the physiological properties of TMS-induced plasticity mathematically, provide an excellent framework for reconciling synaptic and macroscopic plasticity. This article overviews the TMS paradigms used to induce plasticity, and their limitations. It then describes the development of biophysically-based numerical models of the mechanisms underlying LTP/LTD on population-level neuronal activity, and the application of these models to TMS plasticity paradigms, including theta burst and paired associative stimulation. Finally, it outlines how modeling can complement experimental work to improve mechanistic understandings and optimize outcomes of TMS-induced plasticity.
dc.format.mimetypeapplication/pdf
dc.language.isoenen_NZ
dc.publisherElsevieren_NZ
dc.rightsThis is an author’s submitted version of an article published in the journal: Clinical Neurophysiology. © 2018 Elsevier.
dc.subjectScience & Technologyen_NZ
dc.subjectLife Sciences & Biomedicineen_NZ
dc.subjectClinical Neurologyen_NZ
dc.subjectNeurosciencesen_NZ
dc.subjectNeurosciences & Neurologyen_NZ
dc.subjectTranscranial magnetic stimulationen_NZ
dc.subjectBiophysical modelingen_NZ
dc.subjectPlasticityen_NZ
dc.subjectTheta burst stimulationen_NZ
dc.subjectPaired associative stimulationen_NZ
dc.subjectHUMAN MOTOR CORTEXen_NZ
dc.subjectTHETA-BURST-STIMULATIONen_NZ
dc.subjectPAIRED ASSOCIATIVE STIMULATIONen_NZ
dc.subjectNONINVASIVE BRAIN-STIMULATIONen_NZ
dc.subjectCALCIUM-DEPENDENT PLASTICITYen_NZ
dc.subjectDEPRESSION-LIKE PLASTICITYen_NZ
dc.subjectINDUCED I-WAVESen_NZ
dc.subjectFIELD-THEORYen_NZ
dc.subjectCORTICAL PLASTICITYen_NZ
dc.subjectINTERINDIVIDUAL VARIABILITYen_NZ
dc.titleBiophysical modeling of neural plasticity induced by transcranial magnetic stimulationen_NZ
dc.typeJournal Article
dc.identifier.doi10.1016/j.clinph.2018.03.018en_NZ
dc.relation.isPartOfClinical Neurophysiologyen_NZ
pubs.begin-page1230
pubs.elements-id221586
pubs.end-page1241
pubs.issue6en_NZ
pubs.publication-statusPublisheden_NZ
pubs.volume129en_NZ
dc.identifier.eissn1872-8952en_NZ


Files in this item

This item appears in the following Collection(s)

Show simple item record