Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Colour classification of 1486 lakes across a wide range of optical water types

      Lehmann, Moritz K.; Nguyen, Uyen; Allan, Mathew Grant; van der Woerd, Hendrik Jan
      Thumbnail
      Files
      2018 lehmann nguyen allan van der woerd Remote Sensing.pdf
      Published version, 8.049Mb
      DOI
       10.3390/rs10081273
      Link
       www.mdpi.com
      Find in your library  
      Citation
      Export citation
      Lehmann, M. K., Nguyen, U., Allan, M., & van der Woerd, H. J. (2018). Colour classification of 1486 lakes across a wide range of optical water types. Remote Sensing, 10(8). https://doi.org/10.3390/rs10081273
      Permanent Research Commons link: https://hdl.handle.net/10289/12028
      Abstract
      Remote sensing by satellite-borne sensors presents a significant opportunity to enhance the spatio-temporal coverage of environmental monitoring programmes for lakes, but the estimation of classic water quality attributes from inland water bodies has not reached operational status due to the difficulty of discerning the spectral signatures of optically active water constituents. Determination of water colour, as perceived by the human eye, does not require knowledge of inherent optical properties and therefore represents a generally applicable remotely-sensed water quality attribute. In this paper, we implemented a recent algorithm for the retrieval of colour parameters (hue angle, dominant wavelength) and derived a new correction for colour purity to account for the spectral bandpass of the Landsat 8 Operational Land Imager (OLI). We used this algorithm to calculate water colour on almost 45,000 observations over four years from 1486 lakes from a diverse range of optical water types in New Zealand. We show that the most prevalent lake colours are yellow-orange and blue, respectively, while green observations are comparatively rare. About 40% of the study lakes show transitions between colours at a range of time scales, including seasonal. A preliminary exploratory analysis suggests that both geo-physical and anthropogenic factors, such as catchment land use, provide environmental control of lake colour and are promising avenues for future analysis.
      Date
      2018
      Type
      Journal Article
      Publisher
      MDPI AG
      Rights
      © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
      Collections
      • Science and Engineering Papers [2924]
      Show full item record  

      Usage

      Downloads, last 12 months
      86
       
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement