dc.contributor.author | Cavenagh, Nicholas J. | en_NZ |
dc.contributor.author | Mammoliti, Adam | en_NZ |
dc.date.accessioned | 2018-09-03T01:56:03Z | |
dc.date.available | 2018-08-01 | en_NZ |
dc.date.available | 2018-09-03T01:56:03Z | |
dc.date.issued | 2018 | en_NZ |
dc.identifier.citation | Cavenagh, N. J., & Mammoliti, A. (2018). Balanced diagonals in frequency squares. Discrete Mathematics, 341(8), 2293–2301. https://doi.org/10.1016/j.disc.2018.04.029 | en |
dc.identifier.issn | 0012-365X | en_NZ |
dc.identifier.uri | https://hdl.handle.net/10289/12055 | |
dc.description.abstract | We say that a diagonal in an array is λ-balanced if each entry occurs λ times. Let L be a frequency square of type F (n; λ); that is, an n ✕ n array in which each entry from {1, 2, …, m=n / λ } occurs λ times per row and λ times per column. We show that if m≤3 , L contains a λ -balanced diagonal, with only one exception up to equivalence when m=2. We give partial results for m≥4 and suggest a generalization of Ryser’s conjecture, that every Latin square of odd order has a transversal. Our method relies on first identifying a small substructure with the frequency square that facilitates the task of locating a balanced diagonal in the entire array. | |
dc.format.mimetype | application/pdf | |
dc.language.iso | en | en_NZ |
dc.publisher | Elsevier | en_NZ |
dc.rights | This is an author’s accepted version of an article published in the journal: Discrete Mathematics. © 2018 Elsevier. | |
dc.subject | Science & Technology | en_NZ |
dc.subject | Physical Sciences | en_NZ |
dc.subject | Mathematics | en_NZ |
dc.subject | Frequency square | en_NZ |
dc.subject | Latin square | en_NZ |
dc.subject | Ryser's conjecture | en_NZ |
dc.subject | Transversal | en_NZ |
dc.subject | LATIN SQUARES | en_NZ |
dc.subject | ORTHOGONAL MATES | en_NZ |
dc.title | Balanced diagonals in frequency squares | en_NZ |
dc.type | Journal Article | |
dc.identifier.doi | 10.1016/j.disc.2018.04.029 | en_NZ |
dc.relation.isPartOf | Discrete Mathematics | en_NZ |
pubs.begin-page | 2293 | |
pubs.elements-id | 217874 | |
pubs.end-page | 2301 | |
pubs.issue | 8 | en_NZ |
pubs.publication-status | Published | en_NZ |
pubs.volume | 341 | en_NZ |
dc.identifier.eissn | 1872-681X | en_NZ |