Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Computing and Mathematical Sciences
      • Computing and Mathematical Sciences Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Computing and Mathematical Sciences
      • Computing and Mathematical Sciences Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Models of q-algebra representations: Tensor products of special unitary and oscillator algebras

      Kalnins, Ernie G.; Manocha, H.L.; Miller, W., Jr.
      Thumbnail
      Files
      Kalnins q-algebra.pdf
      1.378Mb
      DOI
       10.1063/1.529607
      Link
       link.aip.org
      Find in your library  
      Citation
      Export citation
      Kalnins, E.G., Manocha, H.L. & Miller, W., Jr. (1992). Models of q-algebra representations: Tensor products of special unitary and oscillator algebras. Journal of Mathematical Physics,33, 2365.
      Permanent Research Commons link: https://hdl.handle.net/10289/1206
      Abstract
      This paper begins a study of one- and two-variable function space models of irreducible representations of q analogs of Lie enveloping algebras, motivated by recurrence relations satisfied by q-hypergeometric functions. The algebras considered are the quantum algebra Uq(su2) and a q analog of the oscillator algebra (not a quantum algebra). In each case a simple one-variable model of the positive discrete series of finite- and infinite-dimensional irreducible representations is used to compute the Clebsch–Gordan coefficients. It is shown that various q analogs of the exponential function can be used to mimic the exponential mapping from a Lie algebra to its Lie group and the corresponding matrix elements of the ``group operators'' on these representation spaces are computed. It is shown that the matrix elements are polynomials satisfying orthogonality relations analogous to those holding for true irreducible group representations. It is also demonstrated that general q-hypergeometric functions can occur as basis functions in two-variable models, in contrast with the very restricted parameter values for the q-hypergeometric functions arising as matrix elements in the theory of quantum groups.
      Date
      1992-07
      Type
      Journal Article
      Rights
      Copyright 1992 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in the Journal of Mathematical Physics and may be found at http://jmp.aip.org/jmp/top.jsp
      Collections
      • Computing and Mathematical Sciences Papers [1455]
      Show full item record  

      Usage

      Downloads, last 12 months
      147
       
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement