Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Computing and Mathematical Sciences
      • Computing and Mathematical Sciences Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Computing and Mathematical Sciences
      • Computing and Mathematical Sciences Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Generating species assemblages for restoration and experimentation: A new method that can simultaneously converge on average trait values and maximize functional diversity

      Laughlin, Daniel C.; Chalmandrier, Loïc; Joshi, Chaitanya; Renton, Michael; Dwyer, John M.; Funk, Jennifer L.
      Thumbnail
      Files
      Laughlin_et_al-2018-Methods_in_Ecology_and_Evolution (1).pdf
      Published version, 1.363Mb
      DOI
       10.1111/2041-210X.13023
      Find in your library  
      Citation
      Export citation
      Laughlin, D. C., Chalmandrier, L., Joshi, C., Renton, M., Dwyer, J. M., & Funk, J. L. (2018). Generating species assemblages for restoration and experimentation: A new method that can simultaneously converge on average trait values and maximize functional diversity. Methods in Ecology and Evolution, 9(7), 1764–1771. https://doi.org/10.1111/2041-210X.13023
      Permanent Research Commons link: https://hdl.handle.net/10289/12154
      Abstract
      1. Restoring resilient ecosystems in an era of rapid environmental change requires a flexible framework for selecting assemblages of species based on functional traits. However, current trait‐based models have been limited to algorithms that select species assemblages that only converge on specified average trait values, and could not accommodate the common desire among restoration ecologists to generate functionally diverse assemblages.

      2. We have solved this problem by applying a nonlinear optimization algorithm to solve for the species relative abundances that maximize Rao's quadratic entropy (Q) subject to other linear constraints. Rao's Q is a closed‐form algebraic expression of functional diversity that is maximized when the most abundant species are functionally dissimilar.

      3. Previous models have maximized species evenness subject to the linear constraints by maximizing the entropy function (H’). Maximizing Q alone produces an undesirable species abundance distribution because species that exhibit extreme trait values have the highest abundances. We demonstrate that the maximization of an objective function that additively combines Q and H’ produces a more even relative abundance distribution across the trait dimension.

      4. Some ecological restoration projects aim to restore communities that converge on one set of traits while diverging across another. The selectSpecies r function can derive assemblages for any size species pool that maximizes the diversity of any set of traits, while simultaneously converging on average values of any other set of traits. We demonstrate how the function works through examples using uniformly spaced trait distributions and data with a known structure. We also demonstrate the utility of the function using real trait data collected on dozens of species from three separate ecosystems: serpentine grasslands, ponderosa pine forests, and subtropical rainforests.

      5. The quantitative selection of species based on their functional traits for ecological restoration and experimentation must be both rigorous and accessible to practitioners. The selectSpecies function provides ecologists with an easy‐to‐use open‐source solution to objectively derive species assemblages based on their functional traits.
      Date
      2018
      Type
      Journal Article
      Publisher
      Wiley
      Rights
      © 2018 The Authors. Methods in Ecology and Evolution © 2018 British Ecological Society
      Collections
      • Computing and Mathematical Sciences Papers [1455]
      Show full item record  

      Usage

      Downloads, last 12 months
      61
       
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement