Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Computing and Mathematical Sciences
      • Computing and Mathematical Sciences Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Computing and Mathematical Sciences
      • Computing and Mathematical Sciences Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Transferring sentiment knowledge between words and tweets

      Bravo-Marquez, Felipe; Frank, Eibe; Pfahringer, Bernhard
      Thumbnail
      Files
      wijpaper.pdf
      Accepted version, 277.1Kb
      Find in your library  
      Citation
      Export citation
      Bravo-Marquez, F., Frank, E., & Pfahringer, B. (2018). Transferring sentiment knowledge between words and tweets. Web Intelligence and Agent Systems: An International Journal, 16(4), 203–220.
      Permanent Research Commons link: https://hdl.handle.net/10289/12209
      Abstract
      Message-level and word-level polarity classification are two popular tasks in Twitter sentiment analysis. They have been commonly addressed by training supervised models from labelled data. The main limitation of these models is the high cost of data annotation. Transferring existing labels from a related problem domain is one possible solution for this problem. In this paper, we study how to transfer sentiment labels from the word domain to the tweet domain and vice versa by making their corresponding instances compatible. We model instances of these two domains as the aggregation of instances from the other (i.e., tweets are treated as collections of the words they contain and words are treated as collections of the tweets in which they occur) and perform aggregation by averaging the corresponding constituents. We study two different setups for averaging tweet and word vectors: 1) representing tweets by standard NLP features such as unigrams and part-of-speech tags and words by averaging the vectors of the tweets in which they occur, and 2) representing words using skip-gram embeddings and tweets as the average embedding vector of their words. A consequence of our approach is that instances of both domains reside in the same feature space. Thus, a sentiment classifier trained on labelled data from one domain can be used to classify instances from the other one. We evaluate this approach in two transfer learning tasks: 1) sentiment classification of tweets by applying a word-level sentiment classifier, and 2) induction of a polarity lexicon by applying a tweet-level polarity classifier. Our results show that the proposed model can successfully classify words and tweets after transfer.
      Date
      2018
      Type
      Journal Article
      Publisher
      IOS Press
      Rights
      This is the author's accepted version. The final publication is available at IOS Press through http://dx.doi.org/10.3233/WEB-180389”
      Collections
      • Computing and Mathematical Sciences Papers [1455]
      Show full item record  

      Usage

      Downloads, last 12 months
      82
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement