Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Uncovering the relationship between the change in heat capacity for enzyme catalysis and vibrational frequency through isotope effect studies

      Jones, Hannah B.L.; Crean, Rory M.; Matthews, Christopher; Troya, Anna B.; Danson, Michael J.; Bull, Steven D.; Arcus, Vickery L.; van der Kamp, Marc W.; Pudney, Christopher R.
      Thumbnail
      Files
      Uncovering_the_relationship.pdf
      Accepted version, 747.5Kb
      DOI
       10.1021/acscatal.8b01025
      Find in your library  
      Citation
      Export citation
      Jones, H. B. L., Crean, R. M., Matthews, C., Troya, A. B., Danson, M. J., Bull, S. D., … Pudney, C. R. (2018). Uncovering the relationship between the change in heat capacity for enzyme catalysis and vibrational frequency through isotope effect studies. ACS Catalysis, 8(6), 5340–5349. https://doi.org/10.1021/acscatal.8b01025
      Permanent Research Commons link: https://hdl.handle.net/10289/12572
      Abstract
      Understanding how enzyme catalysis varies with temperature is key to understanding catalysis itself and, ultimately, how to tune temperature optima. Temperature dependence studies inform on the change in heat capacity during the reaction, ΔCP‡, and we have recently demonstrated that this can expose links between the protein free energy landscape and enzyme turnover. By quantifying ΔCP‡, we capture information on the changes to the distribution of vibrational frequencies during enzyme turnover. The primary experimental tool to probe the role of vibrational modes in a chemical/biological process is isotope effect measurements, since isotopic substitution primarily affects the frequency of vibrational modes at/local to the position of isotopic substitution. We have monitored the temperature dependence of a range of isotope effects on the turnover of a hyper-thermophilic glucose dehydrogenase. We find a progressive effect on the magnitude of ΔCP‡ with increasing isotopic substitution of d-glucose. Our experimental findings, combined with molecular dynamics simulations and quantum mechanical calculations, demonstrate that ΔCP‡ is sensitive to isotopic substitution. The magnitude of the change in ΔCP‡ due to substrate isotopic substitution indicates that small changes in substrate vibrational modes are “translated” into relatively large changes in the (distribution and/or magnitude of) enzyme vibrational modes along the reaction. Therefore, the data suggest that relatively small substrate isotopic changes are causing a significant change in the temperature dependence of enzymatic rates.
      Date
      2018
      Type
      Journal Article
      Publisher
      American Chemical Society
      Rights
      This is the author accepted manuscript (AAM). The final published version (version of record) is available online via ACS at https://pubs.acs.org/doi/10.1021/acscatal.8b01025 .
      Collections
      • Science and Engineering Papers [3122]
      Show full item record  

      Usage

      Downloads, last 12 months
      110
       
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement