Show simple item record  

dc.contributor.authorJones, Hannah B.L.en_NZ
dc.contributor.authorCrean, Rory M.en_NZ
dc.contributor.authorMatthews, Christopheren_NZ
dc.contributor.authorTroya, Anna B.en_NZ
dc.contributor.authorDanson, Michael J.en_NZ
dc.contributor.authorBull, Steven D.en_NZ
dc.contributor.authorArcus, Vickery L.en_NZ
dc.contributor.authorvan der Kamp, Marc W.en_NZ
dc.contributor.authorPudney, Christopher R.en_NZ
dc.date.accessioned2019-05-29T21:49:21Z
dc.date.available2018-06-01en_NZ
dc.date.available2019-05-29T21:49:21Z
dc.date.issued2018en_NZ
dc.identifier.citationJones, H. B. L., Crean, R. M., Matthews, C., Troya, A. B., Danson, M. J., Bull, S. D., … Pudney, C. R. (2018). Uncovering the relationship between the change in heat capacity for enzyme catalysis and vibrational frequency through isotope effect studies. ACS Catalysis, 8(6), 5340–5349. https://doi.org/10.1021/acscatal.8b01025en
dc.identifier.issn2155-5435en_NZ
dc.identifier.urihttps://hdl.handle.net/10289/12572
dc.description.abstractUnderstanding how enzyme catalysis varies with temperature is key to understanding catalysis itself and, ultimately, how to tune temperature optima. Temperature dependence studies inform on the change in heat capacity during the reaction, ΔCP‡, and we have recently demonstrated that this can expose links between the protein free energy landscape and enzyme turnover. By quantifying ΔCP‡, we capture information on the changes to the distribution of vibrational frequencies during enzyme turnover. The primary experimental tool to probe the role of vibrational modes in a chemical/biological process is isotope effect measurements, since isotopic substitution primarily affects the frequency of vibrational modes at/local to the position of isotopic substitution. We have monitored the temperature dependence of a range of isotope effects on the turnover of a hyper-thermophilic glucose dehydrogenase. We find a progressive effect on the magnitude of ΔCP‡ with increasing isotopic substitution of d-glucose. Our experimental findings, combined with molecular dynamics simulations and quantum mechanical calculations, demonstrate that ΔCP‡ is sensitive to isotopic substitution. The magnitude of the change in ΔCP‡ due to substrate isotopic substitution indicates that small changes in substrate vibrational modes are “translated” into relatively large changes in the (distribution and/or magnitude of) enzyme vibrational modes along the reaction. Therefore, the data suggest that relatively small substrate isotopic changes are causing a significant change in the temperature dependence of enzymatic rates.
dc.format.mimetypeapplication/pdf
dc.language.isoenen_NZ
dc.publisherAmerican Chemical Societyen_NZ
dc.rightsThis is the author accepted manuscript (AAM). The final published version (version of record) is available online via ACS at https://pubs.acs.org/doi/10.1021/acscatal.8b01025 .
dc.subjectScience & Technologyen_NZ
dc.subjectPhysical Sciencesen_NZ
dc.subjectChemistry, Physicalen_NZ
dc.subjectChemistryen_NZ
dc.subjectheat capacityen_NZ
dc.subjectisotope effecten_NZ
dc.subjectenzymeen_NZ
dc.subjectcatalysisen_NZ
dc.subjecttemperature dependenceen_NZ
dc.subjectARCHAEON SULFOLOBUS-SOLFATARICUSen_NZ
dc.subjectPROTEIN SIDE-CHAINen_NZ
dc.subjectDIHYDROFOLATE-REDUCTASEen_NZ
dc.subjectGLUCOSE-DEHYDROGENASEen_NZ
dc.subjectTEMPERATURE-DEPENDENCEen_NZ
dc.subjectHYDRIDE-TRANSFERen_NZ
dc.subjectMASS MODULATIONen_NZ
dc.subjectCHEMICAL STEPen_NZ
dc.subjectFORCE-FIELDen_NZ
dc.subjectDYNAMICSen_NZ
dc.titleUncovering the relationship between the change in heat capacity for enzyme catalysis and vibrational frequency through isotope effect studiesen_NZ
dc.typeJournal Article
dc.identifier.doi10.1021/acscatal.8b01025en_NZ
dc.relation.isPartOfACS Catalysisen_NZ
pubs.begin-page5340
pubs.elements-id224897
pubs.end-page5349
pubs.issue6en_NZ
pubs.publication-statusPublisheden_NZ
pubs.volume8en_NZ


Files in this item

This item appears in the following Collection(s)

Show simple item record