Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Local and regional influences over soil microbial metacommunities in the Transantarctic Mountains

      Sokol, Eric R.; Herbold, Craig W.; Lee, Charles Kai-Wu; Cary, S. Craig; Barrett, J.E.
      Thumbnail
      Files
      Sokol2013Ecosphere.pdf
      Published version, 3.089Mb
      DOI
       10.1890/ES13-00136.1
      Find in your library  
      Citation
      Export citation
      Sokol, E. R., Herbold, C. W., Lee, C. K., Cary, S. C., & Barrett, J. E. (2013). Local and regional influences over soil microbial metacommunities in the Transantarctic Mountains. ECOSPHERE, 4(11). https://doi.org/10.1890/ES13-00136.1
      Permanent Research Commons link: https://hdl.handle.net/10289/12593
      Abstract
      The metacommunity concept provides a useful framework to assess the influence of local and regional controls over diversity patterns. Culture‐independent studies of soil microbial communities in the McMurdo Dry Valleys of East Antarctica (77° S) have shown that bacterial diversity is related to soil geochemical gradients, while studies targeting edaphic cyanobacteria have linked local diversity patterns to dispersal‐based processes. In this study, we increased the spatial extent of observed soil microbial communities to cover the Beardmore Glacier region in the central Transantarctic Mountains (84° S). We used community profiling techniques to characterize diversity patterns for bacteria and the cyanobacterial subcomponent of the microbial community. Diversity partitioning was used to calculate beta diversity and estimate among‐site dissimilarity in the metacommunity. We then used variation partitioning to assess the relationship between beta diversity and environmental and spatial gradients. We found that dominant groups in the soil bacterial metacommunity were influenced by gradients in pH and soil moisture at the Transantarctic scale (800 km). Conversely, beta diversity for the cyanobacterial component of the edaphic microbial metacommunity was decoupled from these environmental gradients, and was more related to spatial filters, suggesting that wind‐driven dispersal dynamics created cyanobacterial biogeography at a local scale (<3 km).
      Date
      2013
      Type
      Journal Article
      Publisher
      Wiley
      Rights
      Copyright: © 2013 Sokol et al.

      This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
      Collections
      • Science and Engineering Papers [3077]
      Show full item record  

      Usage

      Downloads, last 12 months
      70
       
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement