dc.contributor.author | Sokol, Eric R. | en_NZ |
dc.contributor.author | Herbold, Craig W. | en_NZ |
dc.contributor.author | Lee, Charles Kai-Wu | en_NZ |
dc.contributor.author | Cary, S. Craig | en_NZ |
dc.contributor.author | Barrett, J.E. | en_NZ |
dc.date.accessioned | 2019-06-04T01:20:19Z | |
dc.date.available | 2013-11-01 | en_NZ |
dc.date.available | 2019-06-04T01:20:19Z | |
dc.date.issued | 2013 | en_NZ |
dc.identifier.citation | Sokol, E. R., Herbold, C. W., Lee, C. K., Cary, S. C., & Barrett, J. E. (2013). Local and regional influences over soil microbial metacommunities in the Transantarctic Mountains. ECOSPHERE, 4(11). https://doi.org/10.1890/ES13-00136.1 | en |
dc.identifier.issn | 2150-8925 | en_NZ |
dc.identifier.uri | https://hdl.handle.net/10289/12593 | |
dc.description.abstract | The metacommunity concept provides a useful framework to assess the influence of local and regional controls over diversity patterns. Culture‐independent studies of soil microbial communities in the McMurdo Dry Valleys of East Antarctica (77° S) have shown that bacterial diversity is related to soil geochemical gradients, while studies targeting edaphic cyanobacteria have linked local diversity patterns to dispersal‐based processes. In this study, we increased the spatial extent of observed soil microbial communities to cover the Beardmore Glacier region in the central Transantarctic Mountains (84° S). We used community profiling techniques to characterize diversity patterns for bacteria and the cyanobacterial subcomponent of the microbial community. Diversity partitioning was used to calculate beta diversity and estimate among‐site dissimilarity in the metacommunity. We then used variation partitioning to assess the relationship between beta diversity and environmental and spatial gradients. We found that dominant groups in the soil bacterial metacommunity were influenced by gradients in pH and soil moisture at the Transantarctic scale (800 km). Conversely, beta diversity for the cyanobacterial component of the edaphic microbial metacommunity was decoupled from these environmental gradients, and was more related to spatial filters, suggesting that wind‐driven dispersal dynamics created cyanobacterial biogeography at a local scale (<3 km). | |
dc.format.mimetype | application/pdf | |
dc.language.iso | en | en_NZ |
dc.publisher | Wiley | en_NZ |
dc.rights | Copyright: © 2013 Sokol et al.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. | |
dc.subject | Science & Technology | en_NZ |
dc.subject | Life Sciences & Biomedicine | en_NZ |
dc.subject | Ecology | en_NZ |
dc.subject | Environmental Sciences & Ecology | en_NZ |
dc.subject | Antarctica | en_NZ |
dc.subject | beta diversity | en_NZ |
dc.subject | biogeography | en_NZ |
dc.subject | diversity partitioning | en_NZ |
dc.subject | McMurdo Dry Valleys | en_NZ |
dc.subject | metacommunities | en_NZ |
dc.subject | soil microbial ecology | en_NZ |
dc.subject | Transantarctic Mountains | en_NZ |
dc.subject | variation partitioning | en_NZ |
dc.subject | MCMURDO DRY VALLEYS | en_NZ |
dc.subject | SOUTHERN VICTORIA LAND | en_NZ |
dc.subject | ROSS SEA REGION | en_NZ |
dc.subject | CYANOBACTERIAL DIVERSITY | en_NZ |
dc.subject | TAYLOR VALLEY | en_NZ |
dc.subject | COMMUNITY COMPOSITION | en_NZ |
dc.subject | BACTERIAL DIVERSITY | en_NZ |
dc.subject | ECOLOGICAL DATA | en_NZ |
dc.subject | DISPERSAL | en_NZ |
dc.subject | BIOGEOGRAPHY | en_NZ |
dc.title | Local and regional influences over soil microbial metacommunities in the Transantarctic Mountains | en_NZ |
dc.type | Journal Article | |
dc.identifier.doi | 10.1890/ES13-00136.1 | en_NZ |
dc.relation.isPartOf | ECOSPHERE | en_NZ |
pubs.elements-id | 39042 | |
pubs.issue | 11 | en_NZ |
pubs.publication-status | Published | en_NZ |
pubs.volume | 4 | en_NZ |
uow.identifier.article-no | UNSP 136 | |