Show simple item record  

dc.contributor.authorBravo-Marquez, Felipeen_NZ
dc.contributor.authorFrank, Eibeen_NZ
dc.contributor.authorPfahringer, Bernharden_NZ
dc.contributor.authorMohammad, Saif M.en_NZ
dc.date.accessioned2019-06-18T02:53:09Z
dc.date.available2019en_NZ
dc.date.available2019-06-18T02:53:09Z
dc.date.issued2019en_NZ
dc.identifier.citationBravo-Marquez, F., Frank, E., Pfahringer, B., & Mohammad, S. M. (2019). AffectiveTweets: a Weka package for analyzing affect in tweets. Journal of Machine Learning Research, 20, 1–6.en
dc.identifier.issn1532-4435en_NZ
dc.identifier.urihttps://hdl.handle.net/10289/12617
dc.description.abstractAffectiveTweets is a set of programs for analyzing emotion and sentiment of social media messages such as tweets. It is implemented as a package for the Weka machine learning workbench and provides methods for calculating state-of-the-art affect analysis features from tweets that can be fed into machine learning algorithms implemented in Weka. It also implements methods for building affective lexicons and distant supervision methods for training affective models from unlabeled tweets. The package was used by several teams in the shared tasks: EmoInt 2017 and Affect in Tweets SemEval 2018 Task 1.
dc.format.mimetypeapplication/pdf
dc.language.isoen
dc.publisherMicrotome Publishingen_NZ
dc.relation.urihttp://jmlr.org/papers/v20/18-450.htmlen_NZ
dc.rights© 2019 Felipe Bravo-Marquez, Eibe Frank, Bernhard Pfahringer, and Saif M. Mohammad. License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided at http://jmlr.org/papers/v20/18-450.html.
dc.subjectcomputer scienceen_NZ
dc.subjectTwitteren_NZ
dc.subjectsentiment analysisen_NZ
dc.subjectemontion analysisen_NZ
dc.subjectaffective computingen_NZ
dc.subjectlexicon inductionen_NZ
dc.subjectdistant supervisionen_NZ
dc.subjectMachine learning
dc.subjectTwitter
dc.subjectSentiment Analysis
dc.subjectEmotion Analysis
dc.subjectAffective Computing
dc.subjectLexicon Induction
dc.subjectDistant Supervison
dc.titleAffectiveTweets: a Weka package for analyzing affect in tweetsen_NZ
dc.typeJournal Article
dc.relation.isPartOfJournal of Machine Learning Researchen_NZ
pubs.begin-page1
pubs.elements-id238136
pubs.end-page6
pubs.volume20en_NZ
uow.identifier.article-no92


Files in this item

This item appears in the following Collection(s)

Show simple item record