Show simple item record  

dc.contributor.authorGarae, Jefferyen_NZ
dc.contributor.authorKo, Ryan K.L.en_NZ
dc.contributor.authorApperley, Marken_NZ
dc.contributor.authorSchlickmann, Silvino J.en_NZ
dc.contributor.editorCusack, B.en_NZ
dc.contributor.editorLutui, R.en_NZ
dc.coverage.spatialConference held Tongaen_NZ
dc.date.accessioned2019-10-21T21:15:28Z
dc.date.available2018en_NZ
dc.date.available2019-10-21T21:15:28Z
dc.date.issued2018en_NZ
dc.identifier.citationGarae, J., Ko, R. K. L., Apperley, M., & Schlickmann, S. J. (2018). Security visualization intelligence model for law enforcement investigations. In B. Cusack & R. Lutui (Eds.), Proceedings of 2018 Cyber Forensic & Security International Conference (2018 CFSIC) (pp. 165–177). Conference held Tonga.en
dc.identifier.isbn978-1-927184-48-6en_NZ
dc.identifier.urihttps://hdl.handle.net/10289/12989
dc.description.abstractData analytic methods and techniques have proven crucial in aiding law enforcement investigations and day-to-day operations. However, the rise of cyber-attacks across transnational jurisdictions creates a challenge to share information across law enforcement agencies. Malware, Bitcoin and social media datasets are some examples. Security visualization is a solution to facilitate information sharing across jurisdictions comfortably in enhancing investigations without revealing the underlying sensitive raw data therefore, reducing the time spent on analysing and processing such large dataset. In this paper we introduce the "Security Visualization Intelligence (SVInt) framework", a visualization intelligence model for investigations and situation awareness deployed for the international law enforcement domain. We provide an effective user-centric visual method of analysing, sharing and exchanging complex datasets using visualization to aid law enforcement investigations. Attribution and evidence preservation without revealing the underlying raw data is the primary goal for SVInt. The SVInt framework provide visualizations of Bitcoin transaction relationships and threat map visualization showing top malware threats using geo-locations. It also provides expendable visualization features for future investigation demands. Finally, we provide possible future work within the law enforcement security visualization domain.
dc.format.mimetypeapplication/pdf
dc.language.isoen
dc.subjectcomputer scienceen_NZ
dc.subjectvisualizationen_NZ
dc.subjectforensics visualizationen_NZ
dc.subjectsecurity intelligenceen_NZ
dc.subjectblock chainen_NZ
dc.subjectbitcoinen_NZ
dc.subjectmalware attacksen_NZ
dc.subjecttransnational cyber-attacksen_NZ
dc.titleSecurity visualization intelligence model for law enforcement investigationsen_NZ
dc.typeConference Contribution
dc.relation.isPartOfProceedings of 2018 Cyber Forensic & Security International Conference (2018 CFSIC)en_NZ
pubs.begin-page165
pubs.elements-id226566
pubs.end-page177
pubs.finish-date2018-08-23en_NZ
pubs.publication-statusPublisheden_NZ
pubs.start-date2018-08-21en_NZ


Files in this item

This item appears in the following Collection(s)

Show simple item record